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There is a potential for improving the performance and aeroelastic stability

of tiltrotors through the use of elastically-coupled composite rotor blades. To

study the characteristics of tiltrotors with these types of rotor blades it is nec-

essary to formulate a new analysis which has the capabilities of modeling both a

tiltrotor con�guration and an anisotropic rotor blade. Background for these formu-

lations is established in two preliminary investigations. In the �rst, the in
uence

of several system design parameters on tiltrotor aeroelastic stability is examined

for the high-speed axial 
ight mode using a newly-developed rigid-blade analysis

with an elastic wing �nite element model. The second preliminary investigation

addresses the accuracy of using a one-dimensional beam analysis to predict fre-

quencies of elastically-coupled highly-twisted rotor blades. Important aspects of

the new aeroelastic formulations are the inclusion of a large steady pylon angle

which controls tilt of the rotor system with respect to the air
ow, the inclusion of



elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-

related degrees of freedom which enable modeling of a gimballed rotor system and

engine drive-train dynamics, and additional elastic coupling terms which enable

modeling of the anisotropic features for both the rotor blades and the tiltrotor

wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of

the results produced for a baseline case with analytical and experimental results

reported in the open literature. Two investigations of elastically tailored blades

on a baseline tiltrotor are then conducted. One investigation shows that elastic

bending-twist coupling of the rotor blade is a very e�ective means for increasing

the 
utter velocity of a tiltrotor, and the magnitude of coupling required does not

have an adverse e�ect on performance or blade loads. The second investigation

shows that passive blade twist control via elastic extension-twist coupling of the

rotor blade has the capability of signi�cantly improving tiltrotor aerodynamic per-

formance. This concept, however, is shown to have, in general, a negative impact

on stability characteristics.
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Chapter 1

Introduction

1.1 Problem Statement

The tiltrotor aircraft has been a subject of considerable interest because of its

ability to combine vertical take-o� and landing capability with e�cient long-range

and high-speed cruise 
ight capability. This aircraft is similar to a conventional

�xed-wing aircraft, but has a large-diameter rotor system mounted to a pylon at

each wing tip. The pylons are rotated to change between airplane and helicopter


ight modes.

In high-speed axial 
ight (airplane mode), the tiltrotor is subject to an insta-

bility known as proprotor whirl 
utter. In this con�guration, high in
ow through

the rotor results in large inplane motion-dependent rotor forces. The inplane forces

for a tiltrotor are much larger than those typically associated with conventional

propeller-driven aircraft because of the 
exible blades undergoing 
ap and lag

motions. The motion-dependent rotor forces act to reduce damping in the wing,

resulting in greater wing motion and therefore greater pylon and hub motion. The

rotor forces and wing/pylon motion augment each other with increasing airspeed

to the point where the rotor forces may become destabilizing, ultimately driving

the rotor/pylon/wing system unstable.
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In helicopter 
ight, the tiltrotor is subject to the same harsh dynamic environ-

ment as a conventional helicopter. There is the possibility of aeroelastic instabilities

associated with 
utter, divergence, and air resonance. However, blade 
exibility is

an important characteristic for the aeroelastic interactions, and generally the more


exible the blade becomes, the more likely that an instability may occur. Because

tiltrotor blades tend to be shorter and sti�er than helicopter blades, the likelihood

of an instability is lessened for a tiltrotor in the helicopter 
ight mode compared

to its conventional counterpart.

The operational change between airplane and helicopter 
ight modes leads to

a compromise in tiltrotor design for aerodynamic performance. The conventional

rotor blade planform and twist distribution cannot be optimized for both high-

in
ow airplane 
ight and low-in
ow helicopter 
ight simultaneously. As such,

the hover performance of tiltrotors is generally sacri�ced in favor of axial 
ight

performance which is the 
ight regime where this vehicle holds a large advantage

over helicopters.

The discussion to this point has focused on problems which are inherent to the

tiltrotor con�guration. In summary, the tiltrotor has performance losses associated

with compromise in design between two extreme 
ight regimes, and is subject to

whirl 
utter in high speed 
ights because the rotor system is mounted on an elastic

wing. There is a potential for improving the performance and aeroelastic stability,

as well as the vibration characteristics, of tiltrotors through the use of elastically-

coupled composite rotor blades. The aerodynamic performance may be improved

if the blade can be tailored to deform such that the geometry becomes optimum in

each 
ight regime. The system aeroelastic stability may be improved if blade modes

are elastically-coupled so that high damping in one mode may be transferred into

a lower damped mode. The investigation of potential uses for elastically-coupled

composite rotor blades on tiltrotor aircraft requires sophisticated, comprehensive
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analytical capabilities which do not currently exist. While adequate analyses exist

for modeling tiltrotor aeroelastic behavior, they do not provide a capability for

modeling elastically-coupled rotor blades.

The focus of this dissertation is on the development of an aeroelastic tiltrotor

analysis which has anisotropic composite rotor blade modeling capability. The

theory required to model anisotropic rotor blades is developed, as is the theory

required to aeroelastically model a tiltrotor con�guration in all its 
ight modes.

The basis of the tiltrotor theory development is the current aeroelastic theory

used for helicopter modeling in the University of Maryland Advanced Rotor Code

(UMARC). Following the analytical development, an investigation is carried out to

examine the use of elastically-coupled composite rotors blades for the simultaneous

improvement of the performance and aeroelastic stability characteristics of tiltrotor

aircraft.

1.2 Background and Motivation

This dissertation addresses two research topics which have not previously been con-

sidered together: stability aspects of tiltrotor con�gurations and elastically-coupled

composite rotor blades. Each topic has itself a full history involving separate mo-

tivations and analytical developments. This section �rst addresses the reasons

why the tiltrotor con�guration has become a viable concept. It then discusses

some important aspects of tiltrotor design, followed by a review of the history of

tiltrotor experimental and analytical development. State-of-the-art developments

in anisotropic composite rotor blade modeling is also presented. Lastly, the po-

tential uses for elastically tailored composite blades are discussed, including an

application for the tiltrotor.
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1.2.1 Advantages of the Tiltrotor Con�guration

The reasons for considering a tiltrotor con�guration lie in the desire to merge high-

speed airplane 
ight with vertical takeo� and low-speed helicopter 
ight capability.

A conventional helicopter with its large-diameter, slow-turning rotor is the most

e�cient vehicle for vertical 
ight, but it is limited in range and forward 
ight ve-

locity. High-speed 
ight, say over 250 knots, requires some variation to the basic

helicopter design concept. There are several con�gurations which have been con-

sidered for this purpose. These include the tiltrotor, the tilt-wing, the compound

helicopter, stopped-rotor con�gurations, fan-in-wing con�gurations, and vectored-

thrust jets. The con�guration of choice depends on the mission, but if e�cient

hover and vertical 
ight is truly an important part of a high-speed mission, then

the tiltrotor is perhaps the best choice.

The tiltrotor is an e�cient hovering con�guration because of its low disc load-

ing. The plot of Figure 1.1 shows the hover e�ciency versus the disc loading for

several V/STOL con�gurations. The advantages associated with hovering at a

low disc loading are many: low downwash velocity allow these vehicles to operate

from unprepared �eld areas, low tip-speed and low downwash produce favorable

noise levels, and low power requirements lead to low fuel consumption and greatly

increased range.

Some aspects of the tilt-wing con�guration have advantages over the tiltrotor.

First, the wing chord remains in line with the rotor 
ow �eld, which reduces the

wing interference e�ect experienced by a tiltrotor in hover. Second, on lifto�, the

wing has its chord, the stronger of the wing directions, oriented in the direction

of lift so that less overall wing structure is required to support the fuselage. This

leads to thinner and more e�cient wings for high-speed 
ight. Further, the tilt-

wing does not have the control mechanisms of a tiltrotor. There is no need for the

complexity and weight of conventional helicopter-type cyclic controls on a tilt-wing
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because with its high disc loading it cannot hover for a long period of time, and it

cannot 
y e�ciently at low speed in a helicopter mode because of the high wing

drag. Because of these characteristics, the tilt-wing has a very narrow conversion

corridor (speed and altitude at which the wing can be tilted into or back from

airplane mode) which makes it more di�cult to operate than a tiltrotor.

Stopped-rotor con�gurations and compound helicopters have never been able

to achieve e�ciency in both hover and forward 
ight as successfully as has the

tiltrotor. The stop-rotor type con�gurations, such as X-wing, su�er from the

requirements of 1) the additional weight and complexity of a circulation control

system and/or 2) the loss of e�ciency in hover associated with thick, high-chord,

sti� rotor blades of elliptical cross section. Similarly, compound helicopters carry

a rather large weight penalty in an auxiliary propulsion device, and tend to have

stub-wing designs which degrade hover e�ciency. The combination of these two

penalties has proved too much to overcome in compound helicopter designs to date.

The last two V/STOL con�gurations mentioned, the fan-in-wing and the vec-

tored-thrust jets do not compete for the same missions with a tiltrotor. These

aircraft can have supersonic capabilities for forward 
ight, but are extremely inef-

�cient in hover and vertical 
ight. The main goal of these designs is simply to have

the ability to take-o� vertically and get to forward 
ight as quickly as possible.

In military missions these con�gurations are �ghters and attack aircraft, while a

tiltrotor is a troop transport, scout, and search and rescue aircraft.

The tiltrotor has great potential for both military and civil missions. For the

military missions, the high-speed aspect gives the tiltrotor quicker response times

in comparison to conventional helicopters. The tiltrotor also has a greater range

with capabilities to penetrate and rescue over 400 miles into enemy territory. This

capability would greatly increase U.S. military strength in the types of air wars it

has been involved in over the last few decades. In rescue operations, the vertical
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ight capability is extremely important. The tiltrotor has the additional bene�t of

reaching rescue sites two to three times faster than present rescue aircraft in use.

On the commercial side, tiltrotor aircraft may enhance short-haul operations of

less than 800 miles. Passengers will bene�t from increased accessibility to heliports

which can be located around and inside metropolitan areas, decreasing time and

expense of travel to and away from current congested airports. Remote locations

currently serviced by helicopters, such as o�-shore oil rigs, could be reached in

about half the time it currently takes.

1.2.2 Important Considerations in Tiltrotor Design

The tiltrotor is a unique aircraft which requires some special design considerations

beyond those of conventional helicopters and �xed-wing propeller airplanes. This

section discusses some important considerations for tiltrotors related to aerody-

namics, wing download, control loads, noise, gust response, and vibratory loads.

Aeroelastic stability is also an important consideration, but, as it is the focus of the

present research, this subject is discussed in greater detail in a separate section.

First, it is advantageous to understand the important aerodynamic design con-

siderations which have been identi�ed in the development of the XV-15 Advanced

Technology Blades (ATB) and V-22 (formerly JVX) rotor blades [1,2]. Many of

the di�culties experienced in the aerodynamic design of these blades stem from

the di�erences in rotor in
ow and thrust requirements between helicopter hover

mode and high-speed airplane 
ight. In hover, the in
ow is comparatively small,

and the blade loading is high since the rotor system is supporting the entire weight

of the aircraft and its payload. The hover thrust must also overcome the download

produced by the rotor wake impinging on the wing below. The wing download can

itself be as large as 10-15 percent of the total rotor thrust [3]. The thrust available

in hover must be able to overcome the maximum allowable gross weight and the
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wing download, and still have an adequate margin to provide roll control without

stalling the rotor. In high-speed airplane 
ight, the in
ow is high, and the blade

loading is comparatively low since the thrust only has to overcome the aircraft

drag. Because the rotor thrust e�ciency generally increases with disc loading, the

blade aerodynamic design in the airplane 
ight regime is strongly dependent on

the blade twist and planform selections.

Several parameters have been considered in the aerodynamic design of tiltrotor

blades. Aerodynamic design of the V-22 blades considered diameter, number of

blades, tip speed, airfoils, twist, chord, and taper ratio [2]. For this design, the

diameter was set at 38 feet because of storage clearance considerations (requirement

for shipboard operations), and the number of blades was set at 3 because of the

level of experience in dealing with the rotor dynamics of this system and because

of the storage clearance considerations. Thus, no trade-o� studies were conducted

for these two important parameters. The rotor tip speed was selected based mainly

on maximizing thrust for a given power level. In the hover mode, the variation of

thrust with tip speed near the maximum thrust is fairly 
at so a non-optimum tip-

speed may be selected for auxiliary bene�ts. An important concern for tiltrotors

is noise during landing and take-o�, so it is possible to select a tip speed slightly

lower than that associated with the theoretical optimum to improve the acoustic

characteristics without a noticeable loss in hover e�ciency. In high-speed airplane


ight, the rotor tip speed must be reduced because of compressibility e�ects at

the blade tips. For this 
ight regime the tip speed may be selected based on

maximum airspeed, service ceiling, maximum range, maximum range airspeed, or

a combination of these parameters. As an example, the airplane mode tip speed

is lower than the hover tip speed by about 16 percent for the V-22 and by about

20-percent for the XV-15. Tiltrotor airfoils are selected depending on their radial

location. The inboard blade sections require a thick airfoil to accommodate root
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structure build-up, the middle sections are selected for maximum lift to drag ratio

(generally 12 to 15 percent thick), and the outboard sections require a thin airfoil

(about 9 percent thick) because these are e�cient over a large range of attack angles

and have low drag divergence Mach numbers. The airfoil sections are selected

subject to a constraint on pitching moment coe�cients which must be low for

acceptable control system loads and vibration characteristics, just as for helicopter

blades. The blade twist and chord distributions are selected based on a compromise

between �gure of merit in hover mode and propeller e�ciency in airplane mode

at the design forward 
ight velocity. The aerodynamic design process begins by

approximating a chord and twist through parametric study. Once approximate

planform and twist is de�ned, which will hopefully meet both hover and cruise


ight requirements, the �nal distribution can be de�ned with consideration to

which 
ight mode is more important for the design. The compromise required for

a typical tiltrotor twist design is illustrated in Figure 1.2. The chord selection

is subject to requirements for low-speed maneuver capability which is assessed

by maximum load factor at a given velocity and altitude in helicopter mode. A

chord taper ratio may also be included in the design to improve hover e�ciency.

However, taper tends to reduce propeller e�ciency. If the �nal chord distribution

is signi�cantly di�erent from initial assumptions, the design process may need to

be restarted with the new chord values.

As mentioned above, noise is an important consideration for tiltrotors. The key

issues associated with tiltrotor noise are discussed in a recent study by Huston,

Golub, and Yu [4]. These issues seriously impact the viability of a civil tiltro-

tor where interior noise a�ects passenger comfort and exterior noise a�ects public

acceptance of vertiports. The noise associated with tiltrotor airplane mode oper-

ations is similar to that of a conventional turboprop aircraft, which is a favorable

characterization for this 
ight mode. This noise is less than that associated with
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helicopters in forward 
ight. Tiltrotors in hover also tend to produce less noise

than helicopters (mainly because of the absence of a tail rotor on the tiltrotor),

but tiltrotors in transition from helicopter to airplane mode can produce substan-

tially more noise than a helicopter [5]. The high transition noise is created by

blade-vortex interaction resulting from high pylon angles at high airspeeds. The

transition noise may also lead to unsuccessful marketing of a civil tiltrotor. Some

of the concepts which have been considered for reducing the tiltrotor noise signa-

ture are: reducing the individual blade loads by increasing the number of blades

and reducing the sonic cylinder at the blade tip by using chord taper and thin

airfoils.

Gust response of the tiltrotor is another important consideration which can

impact the rotor system design and the marketability of a civil transport. In high-

speed airplane 
ight, vertical gusts result in design-limit blade bending loads and

anti-symmetric gusts result in design-limit drive train loads [6]. The marketability

aspect is de�ned by the cabin accelerations resulting from the gusts. Cabin re-

sponse to vertical gusts are about the same as for conventional turboprop aircraft,

but response to lateral and longitudinal gusts are higher than that associated with

conventional turboprop aircraft [7]. Research e�orts devoted to alleviating this

problem have generally focused on use of active controls [8].

Reduction of vibratory loads is another important aspect of the tiltrotor which

can create problems for the pylon and wing. In helicopter mode, the tiltrotor has

some distinct advantages over conventional rotorcraft regarding vibratory loads.

The wing dynamics provide vibration absorption and the rotors can be tilted to

minimize the wake-induced vibration at low speeds [9]. In airplane mode, large

2/rev pylon loads have been experienced in 
ight tests of the XV-15 Tilt Rotor Re-

search Aircraft (3 blades) [10]. Here, the source of excitation was the second cyclic

rotor mode loads acting at 1/rev and 3/rev through the gimbal. This excitation

9



was reduced by optimizing the cyclic controls to maintain zero 
apping at high

speeds. The wing aerodynamic interference in airplane mode can produce large

n/rev shear forces at the rotor hub, where n is the number of blades. Large 3/rev

pylon accelerations were experienced in testing of the Bell Model 266 (3 blades)

which were shown to increase with forward 
ight velocity [6]. The cabin response

to these accelerations, however, tends to be low because of the inherent damping

of the wing.

1.2.3 History of Tiltrotor Development

The �rst successful demonstrations of the tiltrotor concept occurred in the early

1950's with aircraft developed by the Transcendental Aircraft Corporation and

Bell Helicopter. These early demonstration aircraft were then referred to as tilt-

proprotors or convertiplanes. The Transcendental Model 1-G, a 3-bladed 17-foot

diameter fully-articulated convertiplane, made its �rst free 
ight at Bellanca Field,

New Castle, Delaware, on July 6, 1954. The rotors were successfully tilted forward

for airplane 
ight in December, 1954, and the Model 1-G completed 23 hours of air

time in over 100 
ights before su�ering major airframe damage in an accident on

July 20, 1955. Although the Model 1-G was designed and built without government

support, the United States Air Force awarded a contract to Transcendental in

June, 1952, for the purpose of obtaining data on blade, rotor shaft and control

stresses, and on blade motions under various conditions of ground operation. Tests

conducted under this contract indicated that mechanical instability would be an

important consideration during conversion mode. The Transcendental Model 2 was

built under phase one of an Air Force contract in 1956, and was of the same basic

design of the Model 1-G, but with more powerful engines. The �nal phase of this

contract was a 
ight test program in which the stability and control characteristics

of the Model 2 were to be determined in all 
ight regimes, but this phase was never
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initiated due to a termination of funding.

While a concern of mechanical instability developed during testing of the Tran-

scendental Model 1-G, it was 
ight testing of the Bell XV-3 which lead to the

discovery of the whirl 
utter instability on tiltrotors. The �rst XV-3, with a three-

bladed fully-articulated rotor system, was built under an Air Force/Army contract

awarded in 1951, but this aircraft was badly damaged in a 1956 accident related

to a blade oscillation problem. A second XV-3 was designed with a two-bladed

semi-rigid (teetering) rotor system which successfully eliminated the blade oscilla-

tion problem of the �rst design. This aircraft established its �rst full conversion in

December 1958, but subsequent testing identi�ed problem areas associated with

high-speed airplane mode of 
ight. The transient blade 
apping during maneuvers

and low levels of longitudinal stability near the dive speed were unacceptable [11].

The low stability margins were found to be related to the inplane forces generated

by the combination of blade 
apping and aircraft pitching motions. As a result

of these observations, full-scale wind-tunnel tests were conducted in 1962 in the

NASA Ames 40 x 80-foot wind tunnel. It was during these tests that whirl 
utter

instability was �rst experienced on a tiltrotor system.

Around this same time frame, knowledge of the devastation associated with

whirl 
utter on �xed-wing aircraft became well known. On the night of September

29, 1959, a Lockheed Electra turboprop aircraft, belonging to Brani� International

Airways, disintegrated in the air near Bu�alo, Texas. A second Electra, belonging

to Northwest Airlines, lost a wing and crashed near Tell City, Indiana, on March

17, 1960. The cause of these two fatal accidents remained unknown until it was es-

tablished in 1963, from NASA Langley wind-tunnel investigations [12], that whirl


utter could occur in an Electra if the engine nacelle sti�ness was greatly reduced,

as by structural failure . While not conclusive, this explanation is generally ac-

cepted as the best explanation of the Electra crashes. Because of the experiences

11



with the Lockheed Electra and Bell XV-3, whirl 
utter became an important de-

sign consideration and a research topic of great interest in the 1960's and early

1970's.

The U. S. Army began the Composite Aircraft program in 1965 with the objec-

tive of developing a rotary-wing research vehicle which could combine the hovering

capabilities of a helicopter with the high-speed cruise capabilities of a �xed-wing

aircraft. While the program was terminated after a brief two-year period, one of

Bell's contributions to this program, an aeroelastic model of the Model 266, was

given to NASA Langley. Subsequently, a joint NASA/Bell study of tiltrotor stabil-

ity, dynamics, and loads was pursued and tests of the model were conducted in the

Langley Transonic Dynamics Tunnel [6]. These tests helped foster an expertise in

tiltrotor design which lead to improved stability and loads characteristics in later

model aircraft.

In 1968, Bell began development of a 25-foot diameter, 3-bladed gimbaled hub

tiltrotor designated as the Model 300. Dynamic rotor/pylon stability investiga-

tions, both model and full-scale, showed the Model 300 rotor was stable with

margins well beyond the aircraft dive speed. In April 1973, NASA and the Army

selected Bell to design and manufacture two tiltrotor research aircraft which were

originally designated the Model 301, and later became known as the XV-15. These

aircraft were intended to demonstrate the feasibility of a generic tiltrotor con�gu-

ration [13]. The XV-15 employs slightly forward swept wings to provide adequate

clearance for blade 
apping. Stability margins were maximized by use of a sti�

wing, use of a sti� pylon-to-wing attachment, and minimization of the rotor hub

to wing distance. Airplane 
ight mode stability was maintained to 370 knots with

a 20-percent reduction in wing and pylon sti�ness.

A great deal of aeroelastic knowledge was gained from the XV-15 wind tunnel

and 
ight tests which were conducted by NASA and Bell Helicopter since 1978.
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The capability of CAMRAD to predict the XV-15 performance, loads, and stability

was assessed by Johnson [14]. Good agreement was achieved between analytical

predictions and experimental results of frequency and damping of the wing modes

for the XV-15 rotor mounted on a cantilevered wing and tested in a wind tunnel.

CAMRAD also produced reasonable predictions of wing mode frequencies and

damping of the XV-15 
ight tests. Predictions were greatly improved with use

of post-test values for the frequencies and structural damping over those obtained

using NASTRAN frequencies and a uniform one-percent structural damping. The


ight test stability results also indicated a general trend of lower damping for all

the symmetric wing modes in comparison to the cantilevered wing stability results.

Some problems associated with the XV-15 data were also discussed by Johnson [14].

Most notably, the data obtained showed signi�cant scatter in most cases, and were

not acquired at consistent operating conditions (
ight altitude and speed varied).

Stability measurements were obtained far away from the stability boundaries which

created di�culties in the assessment of analytical predictive capabilities.

The �rst production tiltrotor will be the V-22 Osprey being developed for use

by the United States Military. The V-22 development program (formerly a Joint

Services program and designated the JVX) was started in April 1983. Six of these

aircraft have been developed as part of a 1985 full-scale development program con-

tracted to Bell Helicopter Textron Inc. and Boeing Helicopter Company. Tests of

a 1/5-scale semi-span aeroelastic model of the V-22 were conducted in the NASA-

Langley Transonic Dynamics Tunnel (TDT) during 1984 [15]. The purpose of these

tests was to obtain data to aid full-scale development and establish a data base for

analytical validation. The in
uence of many important design parameters, such

as compressibility, wing sti�ness, rotor control sti�ness, pitch-
ap coupling, and

coning on the system stability were experimentally determined. Analytical com-

parisons of CAMRAD and DYN4 (Bell Helicopter's proprotor aeroelastic analysis
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which is similar to PASTA [16]) were made with the experimental data [15]. The

correlation e�orts for these codes were extensive and lead to improvements in each

code. General agreement of the CAMRAD and DYN4 codes with the test data was

poor, but speci�c areas of improvement were identi�ed: for DYN4 the modeling

of pitch-
ap coupling and control system sti�ness require improvement while for

CAMRAD compressibility e�ects at high Mach numbers and coning hinge mod-

eling required further investigation. PASTA was in good agreement with all data

obtained in the TDT tests.

The �rst production tilt-wing aircraft is currently under development by Ishida

Aerospace Research, Inc. This civil aircraft is designated the TW-68, and is a 14-

passenger high-speed V/STOL tilt-wing with two propeller-nacelle systems and

four turbo-prop engines. Little information on development of this aircraft, which

has been conducted completely in-house, is currently available.

1.2.4 Elastic Tailoring of Composite Rotor Blades

Since the 1960's, there has been a slow changeover from the use of metal to the use

of composite blades for both manufacturing and structural performance reasons.

This section will discuss some of the advantages associated with composite rotor

blades, including some recent advanced concepts for elastic tailoring.

The manufacturability of rotor blades has been greatly improved with the ad-

vent of composites. Construction techniques used for metal blades, for cost rea-

sons, limit the complexity of the blade geometry. Metal rotor blades are generally

designed with a thin-wall spar wrapped in a semi-monocoque skin. Thin-wall con-

struction is obviously required for weight and structural e�ciency, but this type of

construction is costly for metal parts which must be stamped or rolled into the de-

sired shape. If the blade geometry varies along the span, then the machine tooling

becomes more elaborate and more expensive. It is common for metal rotor blades
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to be almost uniform along the span. Linear rotor blade twist is often introduced

by mechanically deforming the clamped blade after construction is completed.

Composite construction techniques are fundamentally di�erent from those as-

sociated with metal blades. Composite blades are built up from layers of material

laid down or �lament wound onto a solid mandrel. In some instances, laminates

are laid up on 
at surfaces and then formed against female clam-shell tooling dur-

ing cure. In either case, the cost of manufacturing a geometrically complex and

precise component is negligibly di�erent from the cost of manufacturing a simple

one. The manufacturing cost of a composite rotor blade set is competitive with

metal blades, and considering that more complex rotor blade geometries can be

designed within budgetary constraints using composites, the majority of new blade

designs have shifted to composite construction.

With the increased 
exibility in planform design associated with composite

rotor blades, researchers and designers have pursued new aerodynamic performance

bene�ts. The spanwise distribution of airfoil sections are now routinely altered to

optimize performance. This capability is important for rotor blades because of the

signi�cant changes in local velocity which occur along the span. Generally, thick

airfoil sections with large chord are desired inboard to increase lift where velocity is

low, and thin airfoils with small chord are desired outboard to reduce Mach e�ects

where velocity is high. Detrimental e�ects associated with blade stall can also

be improved through variation of the planform, and induced drag can be reduced

with nonlinear twist distributions. These aerodynamic performance improvements,

made economically feasible by using composite materials, have expanded the 
ight

envelope of the helicopter.

In the structural performance area, the advantages of composite blades include

sti�ness, strength, fatigue life, damage tolerance, corrosion tolerance, and elastic

tailorability. Composite materials generally have much higher strength-to-weight
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and sti�ness-to-weight ratios than metals. These properties allow blades to be

designed for minimum weight within autorotational inertia constraints. However,

minimum weight designs have not yet been considered for production rotors be-

cause of limited experience with composite blades and susceptibility to low-impact

damage. With limited experience, blades must be designed very conservatively, far

away from design limits. Low-impact damage is a problem which undermines some

of the structural advantages composites have over metals. This type of damage

is characterized by microscopic cracking or delamination which propagates during

cyclic loading. The initial damage is undetectable by visual inspection and has no

immediate impact on strength or sti�ness, but can have a large impact on both in

a relatively short period of time. Metals are generally not susceptible to damage

which cannot be revealed by visual inspection, so lower factors of safety are re-

quired for metal blades. For these reasons, composite blades have generally been

over-designed with respect to strength and sti�ness requirements.

The fatigue life of rotor blades has increased dramatically with the shift to

composite construction. Composite materials are inherently resistant to fatigue

damage because they are essentially multiple-load-path systems at the microscopic

level (many overlapping �bers). If there is damage due to cyclic loading, the

load shifts into undamaged (sti�er) areas which slows propagation of the damage

and increases fatigue life. An adverse characteristic of composite blades is the

possibility of delamination between ply layers. After delamination is initiated,

damage generally spreads quickly and can lead to catastrophic failure. Fatigue in

rotor blades eventually leads to delamination, but it is very di�cult to predict this

behavior because of its dependence on both geometry and loading. While fatigue

lives of composite rotor blades have been increased to the point where blades can

outlast the airframe, it is still di�cult to predict the actual lives of these blades.

Damage tolerance and corrosion resistance of rotor blades have also improved
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with use of composite materials. Composites retain a greater percentage of their

original strength after damage than do metals. This attribute is related to the

multiple load path system and the high strength to weight ratio inherent in com-

posites. Composites can also be tailored to absorb large amounts of energy through

crushing, as demonstrated in crashworthiness-designed components. Corrosion of

metal blades has been shown to reduce strength and fatigue life. Composite rotor

blades are much less susceptible to corrosion and so do not require the corrosion-

protectant coatings that metal blades do.

Many of the advantages of composite materials have been exploited in rotor

blade designs as discussed in the above paragraphs. More advanced structural

design concepts are now being considered which take advantage of composite ma-

terial anisotropy to tailor rotor blade sti�ness properties (broadly referred to as

elastic tailoring). Elastic tailoring becomes an attractive when sti�ness properties

must be simultaneously controlled in multiple modes or directions, so as to achieve

both a desired chord and 
apwise bending sti�ness, for example. This is where

composites have a great advantage over metals in rotor design.

Composite materials are composed of �bers, typically graphite, Kevlar, or �ber-

glass, embedded in a matrix, generally some type of epoxy resin. Unidirectional

laminates have �bers running in only one direction which is much sti�er than

the cross direction which is dominated by the matrix properties. Thus, composite

materials have a directional nature which can be used to build laminates, substruc-

tures, and rotor blades with desired directional properties as well. The anisotropy

of composites may also be used to create elastic couplings in structures, such as

extension-twist, bending-twist, or bending-shear. Composite materials, thus, may

be used to tailor structures for a particular environment with relative ease and

cost-e�ciency as compared to metals.

A practical example of elastic tailoring in rotor blades is the introduction

17



of the composite 
exbeam in hingeless and bearingless helicopter rotor systems.

Flexbeams are designed to provide appropriate sti�nesses in the bending directions,

and for bearingless systems must additionally maintain low torsional sti�ness for

pitch control. These designs eliminate expensive and fatigue-prone hinges and

bearings used in articulated rotor systems. The advantages of the hingeless and

bearingless designs are decreased production costs, improved aerodynamic per-

formance (reduced parasite drag), and increased maneuverability (higher 
ap/lag

sti�ness quickens control response). With the increased bending sti�nesses as-

sociated with these designs, however, come larger blade loads. With composite

materials, 
exbeams can be tailored to achieve the desired sti�nesses while achiev-

ing acceptable strength margins with the blade loads involved.

A more demanding form of elastic tailoring is the introduction of elastic cou-

plings. For rotor blades, anisotropic layups may be used to couple elastic modes

such as bending to twist, extension to twist, or bending in one plane to shear

in the other. There are several reasons why such coupling is desirable in a rotor

blade. Elastic couplings can be used in the same manner, and generally with less

complexity, as kinematic couplings. An example of the use of kinematic couplings

is found in tiltrotors where pitch-
ap coupling is used to reduce blade 
apping

response. Elastic and kinematic couplings have also been considered to improve

stability characteristics of helicopters. One study has shown that negative pitch-

lag coupling has a stabilizing in
uence on air resonance [17]. Elastomeric dampers,

generally used to avoid ground and air resonance instabilities in bearingless rotor

designs, may be eliminated if appropriate pitch-lag elastic coupling is designed into

the rotor system.

The use of anisotropic composite rotor blades to reduce vibration and im-

prove aeroelastic and aeromechanical stability characteristics of hingeless rotor

helicopters was recently addressed by Smith [18]. For this study, a �nite element
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with shear degrees of freedom was formulated and implemented into UMARC. The

analysis produced good correlation of frequencies with experimental results for sev-

eral elastically-coupled box-beam specimens. The aeroelastic results showed that,

for the elastic couplings considered, the steady 
ap and lag responses and the cor-

responding root bending moments and shears were not signi�cantly altered by the

elastic couplings. This is because the rotational sti�ness contribution is large and

is unaltered by the elastic couplings. However, the shaft-�xed aeroelastic stability

was signi�cantly altered by the elastic couplings. Use of negative pitch-lag coupling

resulted in a 300% increase in lag mode damping compared to the baseline system.

Elastic couplings were also shown to have a signi�cant in
uence on ground and

air resonance. The blade design with negative pitch-lag elastic coupling increased

the regressive lag mode damping in air resonance conditions, but greatly decreased

damping for ground resonance stability. Other types of coupling were also found

to destabilize the system in the ground resonance condition.

There have also been studies which show that elastic tailoring may be used to

improve tiltrotor performance [19]. In these studies, the deformation of the rotor

blade is passively controlled to obtain an optimum twist in both the helicopter and

airplane 
ight modes. The rotor blades of this study are extension-twist coupled

where elastic twist deformation results from changes in centrifugal forces associated

with two rotor speed settings. The design has one rotor speed and associated twist

distribution which are ideal for hover, and a second rotor speed and associated

twist distribution which are ideal for cruise 
ight. These studies have shown that

signi�cant performance improvements can be gained with realistic extension-twist-

coupled blade designs based on structural strength constraints. The dynamic and

stability aspects of these designs have not been investigated.
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1.3 Survey of Tiltrotor Aeroelastic Research

Much of the history of tiltrotor development has concentrated on predicting and

avoiding whirl 
utter instability. Whirl 
utter is a self-excited instability result-

ing from precession-generated aerodynamic loads in high-speed 
ight. This phe-

nomenon has occurred in both conventional �xed-wing propeller aircraft and tiltro-

tors, but the tiltrotor is more susceptible to this instability because of higher levels

of rotor blade 
apping, bending, and control system 
exibility. The possibility that

whirl 
utter could occur on aircraft with propeller systems was �rst mentioned by

Taylor and Brown in 1938 [20]. The phenomenon was only accorded academic

interest because of high margins of safety in the aircraft of the time. Little atten-

tion was given to the subject until it became a topic of renewed research interest

around 1960.

Several early investigations of the aeroelastic behavior of tiltrotor aircraft hav-

ing straight wings were performed using pylon-pivot models. These models ap-

proximate the wing as a system of springs and masses located at the e�ective

pylon pivot point. The earliest work with application to tiltrotors was directed

at hinged or 
exible propeller systems [21, 22]. The analysis developed through

this research e�ort, as well as other analyses of the time, had di�culty predicting

forward whirl 
utter in several instances in which it was obtained experimentally

with small models. These problems were highlighted in the review made by Reed

[23]. A study by Young and Lytwyn [24] showed that the fundamental (in-vacuum)

blade 
apping frequency could be tuned to maximize stability of a tiltrotor sys-

tem. The optimum tuning was approximately 1.1 to 1.2 per-rev, which implies

a requirement for an increase in 
apping restraint for an articulated or gimbaled

rotor system. Because an increase in 
apping restraint increases blade loads, the

applicability of blade tuning is limited [25]. The results of an experimental and

analytical investigation conducted on a scaled model of the XV-3 tiltrotor were
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reported by Edenborough [26]. His analysis used a math model which included a

wing beamwise translation degree of freedom in addition to the conventional pylon

pitch and yaw freedoms. The e�ects of several major parameters on stability were

identi�ed: an increase in pylon pitch and yaw sti�nesses is stabilizing, use of blade

pitch-
ap coupling (�3) is destabilizing, and increased 
apping restraint is stabiliz-

ing. These trends were substantiated analytically by DeLarm [27] using a similar

mathematical model. A study of the e�ects of steady-state coning angle and hinge

damping by Kaza [28] showed that these parameters can also have a signi�cant

in
uence on stability. The results of extensive parametric studies were reported

by Kvaternik [16, 29, 30]. The axial 
ight math model used in these latter studies

included all six degrees of freedom at the pylon pivot point, but generally only the

pylon pitch, yaw, and beam (vertical translation) degrees of freedom were used.

These studies veri�ed trends discussed previously and reported some important

new trends: wing aerodynamic forces are stabilizing, unsteady aerodynamic forces

are stabilizing, windmilling con�guration is conservative (power-on case is more

stable), high precone is destabilizing, both positive and negative �3 are destabi-

lizing, and blade lag dynamics can have an important in
uence on stability. The

analytical model of these studies was later extended to include additional degrees

of freedom and a modal representation of the airframe structure, and was then

formalized into a code called PASTA (Proprotor Aeroelastic STability Analysis).

A more comprehensive math model which included a modal representation for

the wing was developed by Johnson [31]. This model was applicable only to axial


ight and included nine degrees of freedom: six for the three-bladed rotor system

(including gimbal capability) and three for the three fundamental wing modes.

Analytical results obtained with this model correlated well with the results of full-

scale proprotor tests. Johnson later extended this math model to include elastic

blade characteristics and helicopter and conversion modes of operation [32,33].
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These models formed the basic theory for the tiltrotor model in CAMRAD [34],

which is one of the few comprehensive rotorcraft codes to allow treatment of a

tiltrotor aircraft.

In 1985, Johnson assessed some of the recent developments in tiltrotor dy-

namics [9]. In this review, Johnson expressed concern in the ability of tiltrotor

analyses to model some of the new rotor con�gurations being considered, such as

bearingless designs. Concern over the treatment of high-speed aerodynamics was

also expressed. Rotor loads are still an important aspect of tiltrotor design be-

cause these loads can restrict the conversion corridor. Experience with tiltrotor

fuselage vibration showed that wing dynamics provide some vibration absorption,

and the ability of the rotors to tilt forward can be used to minimize the wake-

induced vibration at low speeds. Thus, fuselage vibration does not seem to be as

great a concern for tiltrotors as for helicopters. Johnson consistently emphasizes

the in
uence of pitch-lag and pitch-
ap coupling on tiltrotor stability, pointing out

that pitch-lag coupling is a problem because of large precone. Precone is chosen

to improve blade loads in tiltrotor hover mode, but a large precone at low thrust

in airplane mode produces a negative, destabilizing pitch-lag coupling. Johnson

also mentions that with a soft-inplane rotor, air resonance is possible at low-
ight

speeds where aerodynamic damping is low. More details of this phenomenon are

discussed in reference [9].

The dynamics associated with the rotor rotational speed degree of freedom

(collective lag mode) have been shown to have a large in
uence on whirl 
utter

stability [9, 31, 35]. If the rotor speed is assumed to be constant, then the wing roll

motion is transmitted to the rotor, which increases the wing beam bending mode

damping. This, however, is not an accurate model of the tiltrotor physics. If a rotor

is windmilling, the rotor speed is independent of the wing motion, and the wing

beam mode damping is reduced. In the powered case, it has been shown that the
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engine and rotor-speed governor add little resistance so that the windmilling model

is a good representation of the powered case [35]. This is true for a cantilevered

wing model and the symmetric modes of a free-
ight tiltrotor. This is not true

for the antisymmetric modes of a free-
ight tiltrotor (one wing bending up while

the other is bending down) because sti�ness is added to the drive system from the

interconnect shaft. The interconnect shaft is a safety device which connects the

two rotors so that both may be run o� of the power of a single engine. In symmetric

modes the shaft creates perturbation of rotor speed in the same direction for both

rotors and thus has no sti�ness e�ect. In antisymmetric modes the shaft creates

perturbation of rotor speed in opposite directions, adding a sti�ness to the rotor

speed perturbation modes. The resulting drive system dynamics have a frequency

of the same order as the fundamental wing modes, and can thus have an in
uence

on the system stability.

Johnson also discusses the predictive capability of rigid-blade linear analyses

for tiltrotor stability [9]. Successful predictions may be made with these analyses

even for hingeless and bearingless rotor designs as long as the e�ective pitch-lag,

pitch-
ap, and 
ap-lag couplings are included properly. These types of analyses

are e�ective for a tiltrotor in high-speed airplane 
ight because of the high-in
ow

aerodynamics. With high in
ow, both the 
ap and lag bending motions produce a

�rst-order change in the blade angle of attack, and the blade lift has large compo-

nents both in and out of the rotation plane. As a result, the lift-curve-slope terms

dominate the aerodynamic contributions to the system matrices (even in the lag

terms), and the aerodynamic loading associated with the de
ected trim position

has only a small in
uence on the system stability. Conversely, for a helicopter

the in
ow is much smaller and the blade lift is mainly in the out-of-plane direc-

tion. Thus, the inplane forces are much smaller, and the inplane motion is highly

in
uenced by the blade loads associated with the de
ected trim position.
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The ability of rigid-blade linear analyses with kinematic couplings to accurately

predict whirl 
utter stability may be reduced for more advanced blade designs be-

cause the elastic coupling can involve signi�cant nonlinear deformations. Another

disadvantage of rigid-blade analyses would be their inability to accurately predict

rotor dynamics in helicopter or conversion mode where the trim de
ection has a

more signi�cant in
uence on the system.

The most accurate and general analyses for aeroelastic stability are based on

elastic 
ap,lag, and torsion blade models. The earliest known elastic-blade aeroe-

lastic analysis which included a tiltrotor con�guration capability was developed by

Johnson [33] and later became part of CAMRAD [34]. CAMRAD is capable of an-

alyzing conventional helicopter con�gurations with articulated, hingeless, gimbaled

and teetering rotors. The gimbal rotor system is, of course, most useful for the

tiltrotor con�guration which, as mentioned above, is also included in CAMRAD.

Bearingless rotor systems, however, cannot be accurately modeled in CAMRAD

because they involve multiple load paths (torque tube and 
exbeam), and in CAM-

RAD the blades are essentially formulated for a single load path. For bearingless

rotors, it is better to use a �nite-element-based blade analysis. The elastic blade

model of CAMRAD is reduced to several 
ap-lag-coupled and uncoupled-torsion

modes, and the kinematic couplings may be input directly or calculated internally

based on the control system geometry. Because the analysis is based on a 
ap-lag

rotor model, the 
ap-lag elastic couplings associated with geometry (such as twist)

are included as part of the modal solution. CAMRAD cannot, however, model a

general coupled anisotropic rotor blade built up from composite materials. Fur-

ther, modi�cations to include this capability would be a di�cult task because the

CAMRAD blade model is not �nite element based, torsion modes are uncoupled,

and the blade model does not include an axial degree of freedom which may be

elastically coupled with the 
ap, lag, or torsion modes for composite blades.
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The CAMRAD rotor aerodynamics formulation is based on two-dimensional

tabular data, and includes corrections for Mach number, three-dimensional e�ects,

unsteady 
ow, and dynamic stall. Prescribed and free-wake models are also avail-

able. The CAMRAD airframe consists of six rigid-body degrees of freedom, ten

elastic modes, and a drive system with interconnect shaft option and a rotor speed

perturbation option. The airframe aerodynamics are based on fuselage/wing/tail

steady incidence angles and angle rates. Rotor-body and body-tail interference

e�ects may be included in these calculations. Both free-
ight and wind-tunnel

modeling options are available.

The predictive capabilities of CAMRAD have been discussed in several studies,

and correlations with experimental data have generally been favorable [14,15,36,

37]. The study by Popelka, She�er, and Bilger [15] was based on tests of a

1/5-scale semi-span aeroelastic model of the V-22 which were conducted in the

NASA-Langley's Transonic Dynamics Tunnel. The in
uence of many important

design parameters, such as compressibility, wing sti�ness, rotor control sti�ness,

pitch-
ap coupling, and coning, on the system stability were experimentally deter-

mined. Analytical comparisons of CAMRAD and DYN4 (Bell's Proprotor Aeroe-

lastic Analysis which is similar to PASTA) were made with the experimental data.

The correlation of calculated results based on pretest data were generally poor

for the CAMRAD and DYN4 analyses. Coding errors in the DYN4 analysis were

found and corrected, and the analysis was modi�ed to include pitch-lag coupling

terms. The CAMRAD model of the coning hinge hub was modi�ed, and the blade

airfoil data tables were updated based on the wind tunnel test results. These

post-test modi�cations lead to improved whirl 
utter stability predictions for the

CAMRAD and DYN4 codes. Compressibility e�ects were investigated by testing

the V-22 model in both air and Freon. An investigation of the variation of the

stability boundary with rotor speed showed that while both DYN4 and CAMRAD

25



could predict the 
utter boundaries in air accurately, the CAMRAD error was

higher in Freon at high rotor speeds. This error was believed to be related to a

local Mach problem in the CAMRAD airfoil tables. CAMRAD and DYN4 were

shown to predict the damping of the wing beam mode at and near the point of

instability very well (with post-test modi�cations). The e�ect of pitch-
ap cou-

pling was tested over a range of values from -15 to -10 degrees. The correlation

e�orts of the remaining parametric studies associated with the V-22 wind tunnel

test showed good agreement for both analyses. These studies included variation

of wing and control system sti�nesses, and use of a coned hub. An important

aspect of the Popelka, She�er, and Bilger study was that it demonstrated com-

parable predictive capabilities of whirl 
utter for the rigid-rotor-based DYN4 and

the elastic-rotor-based CAMRAD.

Comparisons of aeroelastic analyses with XV-15 
ight tests were made by Acree

and Tischler [38]. In these 
ight tests, modal frequencies and damping were de-

termined using curve �ts to frequency response data obtained for an XV-15 with

metal blades. The frequency and damping determined from the 
ight data were

compared to predictions from two analyses, CAMRAD and ASAP (a new pro-

prietary analysis developed by Bell, replacing DYN4, but still similar to PASTA).

ASAP and CAMRAD produced similar predictions, but generally agreed with each

other better than the 
ight test data. Both the frequency and damping predictions

of the analyses were in general signi�cantly di�erent from the 
ight test results.

The analytical models used wing natural frequencies, mode shapes, and general-

ized masses as developed by NASTRAN models, with structural and aerodynamic

wing damping estimates based on wind tunnel tests of a V-22 wing aeroelastic

model. The study implies that the predictions would improve with the inclusion

of better estimates of the wing structural damping.

An improved version of CAMRAD, known as CAMRAD/JA, was completed in
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1988 by Johnson [39]. This version of CAMRAD was used in a study by Kottapalli

and Meza [40] to investigate fundamental di�erences between the XV-15 stability

with metal blades as compared to the XV-15 with the ATB (Advanced Technology

Blades). The ATB are a composite blade set developed for improved tiltrotor

performance. This study showed that in airplane 
ight with the XV-15 metal

blades the isolated rotor system is inherently stable, while with the XV-15 ATB

blades the isolated rotor system experiences pitch-
ap 
utter due to an adverse

chordwise mass distribution. The study also addresses aspects of the control system

sti�nesses which have been shown to have an important in
uence on the whirl


utter stability.

Some aspects of tiltrotor aeroelasticity were discussed in a study related to

development of the XV-15 Advanced Technology Blades [41]. This study was

conducted by Boeing under contract with NASA Ames Research Center. The XV-

15 ATB design focused on improving the rotor aerodynamic performance which

resulted in an increase in solidity from .089 for the metal blades to .103 for the

composite blades. Since the rotor diameters are the same for both sets, increased

solidity translates to an increased blade chord and thereby increased torsional

inertia and lower torsion frequencies for the ATB blades. The lower torsional

frequency tends to reduce the whirl 
utter stability margins. To overcome this

reduction, aft sweep outboard of the pitch bearings was introduced into the design.

At high collective settings, such as are experienced in high-speed airplane 
ight,

the sweep reduces blade precone which, in turn, lowers the steady blade bending

moments and the related pitch-lag coupling. As has been discussed previously, the

pitch-lag coupling generally has a destabilizing in
uence on whirl 
utter stability.

The Boeing study showed that about one degree of aft sweep would restore the

stability margins degraded by the increase in blade solidity.

The development of the ATB blades also fostered a feasibility study by Bauchau,
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Loewy, and Bryan [42] which is relevant to the topic of the present dissertation.

The objective of this analytical study was to design a rotor to change twist dis-

tribution between hover and forward 
ight modes by about two degrees. The

twist change was to be accomplished using an extension-twist-coupled rotor blade,

taking advantage of the 15-percent change in rotor speed between the two 
ight

modes of interest. To maintain favorable dynamic characteristics, the design was

constrained relative to the ATB baseline design as follows: same chordwise loca-

tion of the center of gravity at all blade sections, same placement of fundamental

blade in-vacuum frequencies, and same ratio of applied to allowable stresses. The

approach taken in the study for matching the fundamental frequencies was to main-

tain the same mass and sti�ness distribution as the baseline ATB, rather than to

allow either one to shift and be compensated by the other. This required the

elastically-coupled rotor to have the same e�ective beam properties as the ATB

baseline which is a di�cult assignment given that the coupling tends to reduce the

bending sti�nesses. Under these constraints, the resulting design achieved only

about a half of a degree of predicted elastic twist change. The study then consid-

ered an approach which relaxed the constraints of frequency matching, resulting

in signi�cant amounts of elastic twist. The associated 
ap and torsion sti�nesses

were far below the ATB baseline, however. The aeroelastic stability characteristics

associated with these designs could not be determined with available analyses.

Improvements to tiltrotor whirl 
utter through active control has also been

considered. In a recent a study by Nasu [43], control laws were developed based on

harmonic balance algorithms and feedback of wingtip velocity and accelerations.

Stability was improved through application of cyclic pitch controls de�ned by the

closed-loop system. There is some question of the correctness of the model used

because the initial design did not experience an instability at any velocity and,

after reducing wing sti�nesses to one-eighth of their original values, the system
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did not experience an instability until an advance ratio of about 1.5, which is far

above a realistic value. Nevertheless, application of the feedback control law was

shown to improve the damping of this mode.

1.4 Survey of Anisotropic Blade Modeling

There is a potential for improving the performance, aeroelastic stability, and vibra-

tion characteristics of rotorcraft through the use of elastically-coupled composite

rotor blades. To accomplish these gains, one needs to develop aeroelastic analyses.

Currently, comprehensive aeroelastic rotorcraft codes, because of their complexity

and size, are limited to modeling the elastic rotor blade using a one-dimensional

(beam) theory. Thus, there has been recent emphasis on deriving one-dimensional

generally anisotropic beam theories which can capture the important character-

istics of a rotor blade, a structure which is more readily de�ned using two and

three-dimensional theories. The theory must also be nonlinear so that the impor-

tant rotational e�ects may be included. The developments leading to nonlinear

generally anisotropic beam theories are examined in this section. Important con-

siderations for modeling composite rotor blades are addressed �rst. Developments

in general anisotropic beam theories are then addressed, followed by an examina-

tion of theories developed speci�cally for rotor blade use.

1.4.1 Important Considerations in Rotor Blade Analysis

A beam theory developed for modeling a speci�c structure, such as a rotor blade,

can be greatly simpli�ed by taking advantage of certain geometric features. This

section will discuss some of the important e�ects which must be included, as well

as those which can be ignored, in the modeling of rotor blades as beams.

Rotor blades have traditionally been modeled as Euler-Bernoulli (classical)
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beams because they are long and slender. When rotor blades are constructed of

metals, the Euler beam is an adequate blade model because e�ects associated with

in-plane warping, elastic coupling, and transverse shear deformation are generally

negligible. The e�ect of torsion-related out-of-plane warping, which signi�cantly

decreases the torsional sti�ness of a noncircular beam, has been well understood,

and many cross-section analyses use a free-warping assumption (St. Venant) to

obtain the e�ective torsional sti�ness for an Euler beam model. This approach

has proven adequate for static analysis of rotor blades because blades are usu-

ally of closed-cell construction. For closed sections, free-warping may be assumed

everywhere except for very near a clamped blade root. The boundary condition

restrains the warping of the beam, greatly increasing the torsional sti�ness in the

region where the restraint is signi�cant. This region is often referred to in terms of

a decay length, and the e�ect of warping restraint decays very quickly as one moves

away from the boundary of closed-cell beams. Beams with open cross-sections can

have very long warping decay lengths so beam modeling for these structures must

accurately account for warping.

Beam modeling of composite rotor blades is signi�cantly more complex than

modeling of metal rotor blades because of e�ects associated with material anisotropy.

Composites are a nonhomogeneous material (�bers and matrix) which are mod-

eled as a homogenous material in laminate theory. The properties of the �ber and

matrix are \smeared" together as a thin orthotropic lamina or ply. When multiple

plies are bonded together in a laminate, the plies may be arranged so that the

structure as a whole exhibits anisotropic behavior. By variation of the laminate

stacking sequence and the �ber directions of the plies, elastic couplings can be de-

veloped between bending, twist, shear, and extension of the laminate. Rotor blades

built up from composite laminates can also be designed to exhibit this anisotropic

behavior. Some form of laminate theory is generally used in cross-section analyses
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to calculate beam sti�ness properties for composite rotor blades. Finite element

formulations based on laminate theory have also been established here. The ef-

fect of transverse shear deformation can be signi�cant in composite rotor blades

because the classical sti�nesses may be elastically-coupled to the beam shear sti�-

nesses. This coupling can have a signi�cant e�ect on blade 
exibility in the coupled

directions. Poisson e�ects can be substantially larger in composite beams which

leads to signi�cant in-plane warping of the cross-section. The in-plane warping

can in
uence the beam sti�ness properties just as torsion-related warping in
u-

ences the beam torsional sti�ness. The e�ects discussed in this paragraph must be

considered in beam modeling for composite blades.

Rotational e�ects must also be considered in development of beam theories for

composite blades. Nonlinear isotropic-beam theories have been developed to model

rotor blade dynamics including e�ects associated with rotation. The pioneering

formulation of elastic rotor blade modeling was developed by Houbolt and Brooks

[44] assuming linear strains and small deformations. Although rotor blade strains

are assumed small, de
ections may be moderate to large. Several studies in the

early 1970's considered the nonlinear behavior associated with moderate de
ec-

tions in rotor blades [45-47]. Dynamic and aeroelastic analyses based on moderate

de
ection nonlinear beam theory are now state-of-the-art for rotor blades. It is

common in these types of analyses to reduce the number of degrees of freedom

using reduced-basis modal techniques. Inaccuracies associated with use of modal

reduction on highly nonlinear problems have been identi�ed in studies by Bauchau

and Liu [48] and Bauchau and Guernsey [49]. These studies demonstrate the im-

portance of formulating a nonlinear composite rotor blade theory using kinematic

variables which minimize the nonlinearity of the formulation if modal techniques

are to be used. Such rationale for selection of kinematic variables were identi�ed

by Kaza and Kvaternik [50].
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The formulation for rotating beams is more involved than that for nonrotat-

ing beams because the rotation e�ects can only be included through use of the

geometrically nonlinear theory of elasticity. For a general anisotropic beam, ac-

counting for all the possible nonclassical beam e�ects in a nonlinear formulation is

undesirable because of size and complexity considerations. One approach for sim-

plifying the formulation is to split the equations associated with the geometrically

nonlinear three-dimensional theory of elasticity into a nonlinear one-dimensional

set of equations and a linear two-dimensional set of equations (nonlinear beam

theory and linear cross-section analysis). This approach has theoretically been

shown appropriate for twisted nonhomogeneous anisotropic blades through use of

a variational-asymptotical method by Hodges and Atilgan [51].

1.4.2 General Anisotropic Beams

In one of the earliest investigations of anisotropic beams, the equations of elas-

ticity were developed for anisotropic cylindrical shells [52]. This study produced

fully-coupled sti�ness matrices for both open and closed thin-walled cross-sections,

but did not produce analytical results. Other investigators have considered the

behavior of general anisotropic beams of arbitrary cross-section. A theoretical for-

mulation was developed by Iesan [53] based on an assumed displacement �eld in

one early study, but no results were given. Other studies developed approximate

solutions using a two-dimensional anisotropic cross-section model which was solved

using the Ritz method. In one such approach [54] the local and global (spanwise)

deformations were uncoupled, and the two resulting sets of equations were solved

simultaneously. In another such approach [55,56], the global beam problem was

solved using Saint-Venant's inverse method followed by a solution for the local

cross-section deformations. The latter work, while producing equivalent results to

the previous approach, demonstrated that the global beam equations can be solved
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independently of the local cross-section equations. This has special implications

for beam modeling of elastic blades in comprehensive aeroelastic rotor codes, as

will be discussed later. Kosmatka extended this work to include the e�ects of ini-

tial pretwist on anisotropic beam behavior [57]. This study showed that the elastic

twist developed by an axial load applied to a pretwisted extension-twist-coupled

beam could be dramatically increased or decreased by the location of the initial

twist axis.

The in
uences of shear deformation and warping in nonrotating dynamic analy-

sis of coupled beams have been investigated by Kosmatka [58] and Kosmatka and Ie

[59]. These studies demonstrated the importance of out-of-plane shear-dependent

warping and in-plane warping (anticlastic deformations) in the free-vibration anal-

ysis of beam modes in which shear deformation has signi�cant e�ects, such as

bending modes of short beams and high-frequency bending modes of long beams.

Shear deformation also is an important consideration for beams with bending-

shear elastic couplings. Based on the work of Kosmatka and Ie [59], it appears

necessary to include the shear-related warping e�ects for an accurate prediction of

frequencies of bending-shear coupled beams.

1.4.3 Anisotropic Beam Modeling for Rotor Blades

Early anisotropic beam theories developed speci�cally for rotor blades concentrated

on development of the basic equilibrium, compatibility, and constitutive relations

for static analysis of an anisotropic beam [60]. These theories were simpli�ed

by assuming a thin-walled construction so that composite laminate characteristics

could be easily incorporated through integration around the contour. The in
uence

of the shear deformation on the e�ective beam sti�nesses was considered, but the

in
uence of cross-section warping was not considered. The importance of the

shear deformation and its e�ect on anisotropic beam bending was emphasized by
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Reh�eld [61] who put forth a clear and concise extension of the Mans�eld and

Sobey [60] theory. Reh�eld also discussed the in
uence of torsion-related warping

on the sti�ness parameters [62]. The capabilities and limitations of the Reh�eld

theory were determined in a series of analytical and experimental studies [19,63,64].

These studies showed that the Reh�eld theory could accurately predict the global

response of elastically-coupled thin-walled beams, but errors in bending prediction

increased with laminate thickness. The predictions of stress and strain distribution

through the cross-section were shown to be in error which is attributable to the

thin-wall assumptions.

Composite modeling capabilities were introduced in aeroelastic rotor analy-

ses by researchers at the University of Maryland. Hong and Chopra modeled

composite rotor blades as laminated thin-walled beams [65,66]. These studies rep-

resented hingeless and bearingless rotors as either rectangular cross-section box

beams composed of four separate laminates or as I-beams. Laminate theory was

used to calculate the e�ective cross-section properties for the beam model which

used displacements associated with classical beam theory. Neither in-plane warp-

ing e�ects nor transverse shear deformation were considered in the analysis. The

nonlinear governing equations were derived using a �nite element formulation, and

the e�ects of elastic coupling on aeroelastic stability in hover were investigated.

This model was extended by Panda and Chopra to examine the dynamics asso-

ciated with composite rotor blades in forward 
ight [67]. Here, the e�ects of ply

orientation and elastic coupling on vibration levels and isolated rotor stability were

addressed. An important contribution of this work was the solution of the blade

periodic response using the �nite element in time procedure. The e�ects of shear

deformation on rotating beam dynamics were examined by Smith and Chopra [68]

in a study which extended the rotor analysis known as UMARC (University of

Maryland Advanced Rotor Code, Hong and Chopra [65,66]) to include explicit
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shear degrees of freedom. Results of this study showed improvements in the pre-

diction of lower mode frequencies for bending-shear coupled beams. It is clear from

this study that shear deformation e�ects must be included in the beam analysis

to obtain accurate frequencies of bending-shear coupled beams, but the approach

of using explicit shear degrees of freedom increased the size and complexity of

the formulation. Smith [18] later examined the in
uence of signi�cant amounts of

elastic coupling on helicopter aeroelastic response and aeromechanical stability.

A nonlinear composite beam theory for blades with curved elastic axes was

developed by Kosmatka [58]. A re�ned theory for determination of the compos-

ite blade shear center was also presented. The theory accounted for out-of-plane

torsion-related warping , but did not consider shear deformations or in-plane warp-

ing. Results of the study showed excellent agreement in frequency predictions for

some composite curved beams.

The linear periodic response of thin-walled composite rotor blades in forward


ight have been investigated by Rand [69,70]. This study used a detailed model

for cross-section warping, and examined response, loads, and stresses for blades

with extension-torsion and bending-torsion couplings.

Some recent endeavors in the area of composite rotor aeroelastic analyses have

also been made. Fulton [71] developed a composite rotor stability analysis based

on a �nite element formulation of the intrinsic, mixed dynamic equations of Hodges

[72] which include the e�ects associated with shear deformation. Stability results

are presented for a helicopter in hover with hingeless extension-torsion-coupled

rotor blades. Yuan and Friedmann [73] developed a hovering aeroelastic stability

analysis for composite rotor blades with tip sweep and anhedral. This study in-

cluded transverse shear deformation and torsion-related warping restraint e�ects

in a twenty-three degree-of-freedom beam element. Comparisons of this work are

made with results of Hong and Chopra [65]. Kim and Dugundji expanded the
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previous large-displacement nonlinear beam formulation of Minguet and Dugundji

[74,75] to examine stability in hover.

1.5 Scope of the Present Research

The present research examines the performance, response, and aeroelastic stabil-

ity of a tiltrotor with elastically-coupled composite rotor blades. As the analytical

tools required to perform this task do not currently exist, the focus of this re-

search will be on the development of an appropriate comprehensive aeroelastic

analysis which has the required capabilities: tiltrotor con�guration modeling and

anisotropic blade modeling. These capabilities are added to an existing version of

UMARC which is limited to helicopter con�guration modeling and isotropic blade

modeling.

The research presented in this dissertation consists of four major parts. The

�rst three parts address the theoretical development of an anisotropic-blade aeroe-

lastic tiltrotor theory. In the �rst part, an understanding of the basic stability

mechanisms of a tiltrotor in high-speed axial 
ight is established using a rigid-

blade analysis. The second part addresses the accuracy of using a one-dimensional

analysis to predict frequencies of elastically-coupled highly-twisted rotor blades.

Here, a new anisotropic beam �nite element is developed which uses the same as-

sumed displacement �eld as the UMARC Euler-beam element. In the third part,

the �nal anisotropic blade and tiltrotor con�guration aeroelastic theory is devel-

oped and implemented in UMARC. The fourth part of the research encompasses

validation of the analysis and investigation of some elastically-coupled blade con-

cepts. The following sections describe in more detail what is accomplished in each

of these four parts.
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1.5.1 Fundamental Study of Tiltrotor Stability

The basic stability mechanisms of a tiltrotor in high-speed axial 
ight are investi-

gated in Chapter 2. While the studies mentioned in Section 1.3 describe most of

the tiltrotor dynamic behavior trends, physical explanation of many phenomena

are not available. In addition, there has been limited investigation of the role of lag

dynamics in stability. Further, although wing sweep has been recently considered

as a means of increasing tiltrotor cruise velocities [76], there apparently has been

no consideration of the in
uence of wing sweep on aeroelastic stability.

The objective of Chapter 2 is to ascertain the tiltrotor system design parame-

ters which are important to aeroelastic stability and to determine their in
uence

on stability in the high-speed axial 
ight mode using a rigid-blade linear analysis.

This chapter �rst addresses the math model and theory underlying the analysis

development, and then focuses on a discussion of the results obtained using the

analysis. In particular, the discussion includes the frequency and damping char-

acteristics of a baseline system, the Bell 25-ft diameter proprotor mounted on a

cantilever wing [31], as well as the e�ects of several key system design parameters

on stability of the baseline system. These include: blade frequencies, wing sti�-

nesses, wing sweep, and blade pitch-
ap coupling. All cases assume that the rotor

is operating in the windmilling state, which means that the rotor torque does not

transfer to the wing and that the wing vertical bending rotation degree of freedom

at the wing tip (pylon roll) does not contribute to rotor inplane motion.

It should be noted that the study of Chapter 2 is based entirely on a 
ap-lag

rigid-blade gimballed rotor mounted on a cantilevered wing. Some limitations of

this model are the exclusion of: blade torsion dynamics, coupled 
ap-lag blade elas-

tic motion, and fuselage rigid-body motion. These factors limit the applicability

of the model in the prediction of free-
ight tiltrotor stability.
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1.5.2 Dynamic Analysis of Elastically-Coupled Blades

Chapter 3 addresses the accuracy of using one-dimensional analysis for the predic-

tion of rotating beam frequencies of elastically-coupled, highly twisted rotor blades.

There are three objectives for this study: 1) show that the degrees of freedom as-

sociated with shear deformation may be statically condensed from the analysis,

2) show that the nonclassical in
uences associated with cross section warping,

which may become signi�cant as a result of elastic coupling, can be accounted for

without the incorporation of these e�ects explicitly in the rotating beam analysis,

and 3) determine the potential improvement in e�ciency by using higher-order

displacement approximations in a �nite element implementation.

A rotating beam analysis was developed based on a formulation of nonlinear

equations of motion and a �nite element implementation. The formulation is

derived from basic principles to show how shear deformation and warping enter

the theory. The formulation is nonlinear as is required to capture the essential

centrifugal sti�ening e�ects even in the linearized form of the equations. The

degrees of freedom associated with shear deformation are eliminated through static

condensation of the linear force-displacement relationships. The linear part of the

formulation is implemented as a p-version beam �nite element such that the degree

of polynomial approximation for the bending, torsion, and axial displacements

may be independently selected. This implementation is described in the chapter

along with the results of a convergence study. This convergence study will show

the e�ciency of certain displacement approximations for a bending-twist-coupled

beam.

Results of the rotating beam analysis are compared with those calculated by

Smith and Chopra [68] for a set of elastically-coupled rotor blades. This will help

to prove the validity of static condensation of the shear degrees of freedom for dif-

ferent modes. Attention is then focused on nonclassical e�ects (shear deformation
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and warping) and their in
uence on the prediction of both rotating and nonrotat-

ing frequencies for elastically-coupled and highly twisted beams. Comparisons are

made with experimental results obtained by Chandra [77], 1-D analytical results

obtained with UMARC as presented by Smith and Chopra [68], and 3-D analytical

results obtained using the analysis of Hinnant [78]. The formulation is then im-

plemented in UMARC, and results are validated for several helicopter rotor blade

con�gurations.

1.5.3 Tiltrotor Aeroelastic Theory Development

A new �nite-element-based tiltrotor aeroelastic theory is derived based on Hamil-

ton's principle. The derivation involves the development of elastic strain en-

ergy, kinetic energy, and virtual work and is similar to previous derivations of

UMARC [79], but involves new degrees of freedom and terms not previously con-

sidered. Some of the new terms are related to the anisotropic beam modeling, some

to a new formulation for inclusion of important precone e�ects, and some to the

tiltrotor con�guration modeling. There are three new degrees of freedom added

to the �ve hub degrees of freedom considered in past UMARC derivations, one of

these is associated with blade yaw motion and the other two are associated with a

gimballed rotor system. Also, a large steady angle transformation is introduced to

account for the rotor pylon angle setting, and an elastic wing model is derived from

the elastic blade model. The new structural formulations for the blade, hub, and

wing structural model are derived in Chapter 4, and the new aerodynamic formu-

lations are derived in Chapter 5. Chapter 6 addresses other modi�cations to the

UMARC helicopter theory necessary to accommodate the tiltrotor con�guration:

a rigid analysis for estimating initial controls, linear interpolation of elastic blade

properties, and new coupled trim analyses. Chapter 7 addresses the assembly of

the wing, hub, and blade matrices and other aspects of tiltrotor stability analysis.

39



1.5.4 Comparison Studies

The remainder of the dissertation focuses on results obtained with the new aeroe-

lastic tiltrotor analysis, and these results are reported in Chapter 8. The ana-

lytical results obtained for a baseline con�guration are compared with published

analytical and experimental results. Following an assessment of the capabilities of

the new aeroelastic tiltrotor analysis, two elastically-coupled rotor blade concepts

are investigated. In one study, the potential use of bending-twist-coupled rotor

blades to enhance tiltrotor stability characteristics is investigated. The in
uence

of these blades on performance and loads is also considered. In the second study,

the potential use of extension-twist-coupled rotor blades to improve aerodynamic

performance is invetigated. Here, the in
uence of these rotor blades on stability

characteristics is also considered.
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Chapter 2

Fundamental Study of Tiltrotor

Whirl Flutter

In this chapter, the aeroelastic theory for a tiltrotor in high-speed axial 
ight is

derived and implemented as a rigid-blade linear analysis for fundamental studies of

whirl 
utter stability. The objective is to gain an understanding of important whirl


utter characteristics, and examine how system design parameters in
uence these

characteristics. The present chapter �rst describes the math model and theory

underlying the analysis, then focuses on a discussion of the results obtained using

the analysis. In particular, the discussion includes the frequency and damping

characteristics of a baseline system, the Bell 25-ft diameter proprotor mounted

on a cantilevered wing [31], as well as the e�ects of several key system design

parameters on stability of this baseline system. These include: blade frequencies,

wing sti�nesses, wing sweep, and blade pitch-
ap coupling. All cases assume that

the rotor is windmilling, which means that the rotor torque does not transfer to

the wing and that the wing vertical bending slope degree of freedom at the wing

tip (pylon roll) does not contribute to rotor inplane motion.

While the tiltrotor studies desribed in Section 1.2.3 discuss many tiltrotor dy-

namic behavior trends, they do not always provide a physical explanation for the
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observed behavior. The present chapter will attempt to provide some of these

explanations. In addition, there has been limited investigations on the role of lag

dynamics in stability. Further, although wing sweep has been recently considered

as a means of increasing the tiltrotor cruise velocities [76], there apparently has

been no consideration of the in
uence of wing sweep on aeroelastic stability.

It should be noted that the study of this chapter is based entirely on a 
ap-

lag rigid-blade gimballed rotor mounted on a cantilevered wing. Some limitations

of this model are the exclusion of blade torsion dynamics, coupled 
ap-lag blade

elastic motion, and fuselage rigid body motion. These factors limit the applicability

of the model in the prediction of free-
ight tiltrotor stability.

2.1 Description of the Math Model

A detailed derivation of the math model is provided in Appendix A. The follow-

ing paragraph provides a brief description of the math model and some of the

important assumptions used in its development.

A three-bladed gimballed rotor system is assumed. The rotor aerodynamic

model is quasi-steady and assumes a constant lift curve slope with Mach number

corrections. The structural model is a rigid-blade 
ap-lag model. For a gimballed

rotor system in 
ap, the rotor tip-path-plane may tilt like an articulated system

hinged at the center of rotation, but must cone like a hingeless system about

a virtual 
ap hinge. In cyclic lag, the rotor acts like a hingeless system with

de
ections de�ned about a virtual lag hinge, but in collective lag the blades are

free. Perturbations of the rotor speed are considered which have been shown in

past studies to have a signi�cant in
uence on tiltrotor stability. The rotor system

has six degrees of freedom (�0, �1c, �1s, �0, �1c, �1s) and associated equations of

motion. The wing-tip motion contributes terms to the rotor equations, and the

net rotor forces are in-turn applied to the wing tip. The wing model is represented
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by beam �nite elements having vertical bending, chordwise bending, and torsional

degrees of freedom. The wing lift is included in the wing equations through a quasi-

steady aerodynamic model with Mach number corrections. The wing and rotor

systems are coupled through the degrees of freedom associated with the wing-tip.

The force terms of both the rotor and wing equations contain motion dependent

terms which are brought into the system mass, damping and sti�ness matrices.

The steady forces are then set to zero and the resulting system of equations is

solved using standard eigenvalue techniques to obtain its frequency and damping

characteristics. The accuracy of the analysis was veri�ed through comparison of

results with those reported by Kvaternik [16] and Johnson [31].

2.2 Frequency and Damping Characteristics of

the Baseline System

The important in-vacuum frequencies of the baseline wing and rotor system are

listed in Table 2.1. The rotating lag frequency changes with collective pitch (and

therefore forward 
ight velocity) so its value for the baseline con�guration is rep-

resented by a curve as shown in Figure 2.1. The in-vacuum cyclic 
ap frequency

is related to the gimbal dynamics, and does not change with collective pitch. The

collective 
ap frequency is dominated by the rotational sti�ness contribution, and

thus changes very little with the collective pitch. Since this mode has a high

frequency, the changes as a function of collective pitch setting are neglected. Ad-

ditional data for the rotor system are reported by Johnson [31] and are also given

in Table 2.2. A �nite element model for the wing was developed with the equiva-

lent mass and sti�ness characteristics of Johnson's modal wing model. The model

parameters for the �nite element wing are listed in Table 2.3.

Now consider the system with aerodynamics. The frequency and damping
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of the wing and rotor modes for the baseline system are shown as a function of

forward 
ight velocity in Figure 2.2. The terms ��1 and �+1 represent the low

and high frequency modes of the �xed-frame blade 
apping response, respectively,

and similarly ��1 and �+1 represent the low and high frequency �xed-frame blade

lag response. Since �� is less than 1.0 in air, the ��1 mode is progressive.
The frequencies of the ��1 and ��1 modes cross the fundamental wing mode

frequencies and a�ect the damping of the wing modes. Abrupt changes of damping

occur in the beam and chord modes where ��1 crosses those wing frequencies,

and the beam and chord mode damping decrease rapidly as the ��1 frequency

approaches those wing frequencies. The wing chord mode has a damping valley

because the ��1 mode damping is lower than the chord mode damping at the

velocity where the frequencies cross. Conversely, the beam mode has a damping

peak because the ��1 mode damping is greater than the beam mode damping

at the velocity where those frequencies cross. Further indication of this transfer

of damping from the lag mode is o�ered in Figure 2.3, where the baseline lag

frequency curve has been arbitrarily shifted up by a factor of 1.05. As shown, the

increase in lag frequency shifts the crossing with the chord frequency to a higher

velocity where the corresponding chord mode damping is now lower than the ��1
mode damping. The result is a damping peak rather than a damping valley in the

chord mode.

2.3 Rotor Frequency

In this section, the in
uence of rotor in-vacuum 
ap and lag frequencies on tiltrotor

stability is examined in more detail. The mass and inertia properties are held �xed,

so the increase in the in-vacuum 
ap frequency can be developed only through an

increase in the gimbal hub spring. The lag frequency increase would be obtained

through increases in the blade sti�nesses (both 
ap and lag). The baseline 
ap
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frequency is parametrically varied from .9 to 2.5 of its original value (the lower

factor of .9, while physically unobtainable for 
ap in vacuum, is used to provide

continuity of the trends). Because the lag frequency changes as a function of

velocity, for this study the lag frequency was varied by shifting the baseline lag

frequency curve by a factor ranging from .9 to 2.5. Extreme variations of 
ap

and lag frequency are unlikely to be obtainable in design practice, but they are

of academic interest so that physical reasoning of the trends within the design

range may be established. The in-vacuum 
ap and lag frequency variations were

performed independently, meaning that the 
ap frequency was held at its baseline

value while lag frequency was varied, and vice versa. In addition to showing the

direct e�ects of 
utter speed as a function of 
ap and lag frequency, this study

will provide insight into the 
utter mechanism. By better understanding this

mechanism, the rotor and wing properties may be selected to enhance tiltrotor

stability.

The results of sweeping through values of �� and �� on the baseline tiltrotor

con�guration are illustrated in Figure 2.4 and Figure 2.5, respectively. Several ob-

servations based on these plots are described in the following numbered paragraphs

(italicized). The paragraphs also include explanations (non-italicized) which are

based on a sequence of frequency and critical damping plots re
ecting parametric

changes in the 
ap and lag frequencies. The results of changing 
ap frequency are

shown in Figures 2.6 and 2.7 while the results of changing lag frequency are shown

in Figures 2.8 and 2.9.

1. As shown in Figure 2.4, the beam and chord mode V �

f rise sharply with an

increase in �� at low values of �� (�� factors .9 to 1.2). There are two e�ects

working here. One is a decrease in the ��1 frequency, and the other is an increase
in the wing torsion frequency. The decrease of the ��1 frequency increases the

velocity at which it crosses above the ��1 frequency (note sequence of Figures 2.2,
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2.6, 2.7). As long as the ��1 frequency remains between the beam mode frequency

and the ��1 frequency there is little interaction between the 
apping and wing

motions. The low lag frequency acts like a barrier, preventing coalescence of the

low 
ap frequency with the beam mode, until the low 
ap frequency is able to cross

above it. Notice that the ��1 mode changes from a progressive mode at 1.0��

(Figure 2.2) to a regressive mode at higher �� and low velocities (Figures 2.6,

2.7). This is because the �3 e�ect is small at low velocities, so the e�ective ro-

tating frequency is above 1.0 until the �3 e�ect lowers it. As �� increases it takes

progressively higher velocities to lower the e�ective 
ap frequency, which is why

the transition from the regressive to progressive 
ap mode occurs at increasingly

higher velocities. The increase in torsion frequency further separates the beam and

torsion modes, which is stabilizing as will be shown later in the wing frequency

study.

2. As shown in Figure 2.4, a �+1 mode instability occurs at high �� factors

(�� factor above 1.2). The 
utter speed ,V �

f , drops sharply over the range 1.2�� to

1.6�� then increases over the range 1.6�� to 2.5��. The rotor instability shifts from

a �+1 mode to a �+1 mode at about 1.9��. A �+1 rotor instability occurs above

about 1.2�� because of a 
ap and lag frequency coalescence in the rotating frame.

In the �xed frame, the high frequency modes cross which results in an instability

in the highest frequency rotor mode, �+1. As �� increases beyond 1.6��(these

plots not shown), the �+1 frequency �rst crosses the �+1 frequency curve then

coalesces weakly with it as it falls below the �+1 frequency. The weakening of the

coalescence gives a higher V �

f for the �+1 instability. Further increases in �� result

in the rotor instability shifting from the �+1 mode to the �+1 mode. This occurs

at the �� where the �+1 frequency becomes higher than the �+1 frequency.

3. As shown in Figure 2.4, the wing beam mode does not become unstable above

about 1.4��. There are two reasons for this. First, the 
ap and lag modes become
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highly coupled due to the coalescence of those frequencies (as discussed above) so

there is only a slight destabilizing in
uence of the blade 
ap mode on the beam

mode. The second reason is the increased separation of the wing beam and torsion

frequencies which has a stabilizing e�ect on the wing mode (notice increase in

torsion frequency in sequence of Figures 2.2, 2.6, 2.8 even at low velocities). As

�� increases, the torsion frequency also increases because of mechanical coupling

between the rotor 
ap and wing torsion motions.

4. As shown in Figure 2.4, the wing chord mode can become unstable even

at high �� factors. This is because the chord mode is not strongly coupled to

any other modes. Its 
utter speed continues to increase as �� increases due to

decreasing interaction with the rotor 
apping mode. It should be noted that the

chord mode may be more strongly coupled with the beam and torsion modes in the

free 
ight condition (not considered in the present study) through inertial coupling.

5. As shown in Figure 2.5, the chord mode V �

f increases with increases in ��

factor, until about 1.5��, then does not increase further. At low values of �� factor

the damping in the chord mode is strongly in
uenced by the location of the ��1
frequency with respect to the chord frequency, particularly when there are no other

frequencies between the two. Each subsequent change in the lag frequency creates

a large change in the chord mode V �

f (notice where the ��1 frequency crosses the

chord frequency in the sequence of Figures 2.2, 2.8, 2.9). As the lag frequency

factor increases above 1.5, the ��1 frequency becomes higher than the torsion

frequency for most velocities, so there is little in
uence of further increases in ��

factor on the chord mode instability.

6. As shown in Figure 2.5, the beam mode V �

f �rst increases with �� factor,

reaches a maximum, then decreases with �� factor to a value lower than that for

the baseline con�guration (1.0��). The beam mode V �

f initially increases with ��

factor because damping of this mode is increased through coalescence of the beam
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frequency with the ��1 frequency (note where the ��1 and ��1 frequencies

cross in relation to the beam mode frequency in the sequence of Figures 2.2, 2.8,

2.9). As the lag frequency increases, the ��1 mode crosses the beam mode at

higher velocity, where there is more damping available to be transferred to the

beam mode. With further increases in �� factor the ��1 frequency coalesces with
the beam frequency without any interference from the ��1 frequency (Figure

2.9). The coalescence between the beam and ��1 frequencies becomes dominant
as �� continues to increase, resulting in a large decrease in the beam mode V �

f .

Also of interest is the trend of the beam mode 
utter curve with respect to �� in

comparison with that of the chord mode (see Figure 2.5). As noted previously,

the beam mode instability becomes 
ap mode dominated at about 1.3�� , which

corresponds to the peak in its 
utter curve. The chord mode instability becomes


ap mode dominated at about 1.7�� , which corresponds to the plateau in its 
utter

curve. The instability of the beam mode becomes 
ap mode dominated at a lower

�� factor than the chord mode because its frequency is closer to the ��1 frequency
than is the chord mode frequency. The beam mode 
utter curve eventually levels

o� at a very high �� factor, above that at which the chord mode levels o�, because

the beam mode is coupled to the torsion mode through the wing-chordwise mass

o�set. The beam mode 
utter continues to be in
uenced by the lag frequency until

the ��1 frequency ceases to cross or coalesce with the torsion frequency.

7. As shown in Figure 2.5, the chord V �

f is lower than the beam V �

f over

the range of 1.0�� to 1.4��. This is because there is increased damping in the

beam mode due to its interaction with the lag mode. As shown in the sequence

of Figures 2.2 and 2.8 the ��1 frequency crosses the beam mode frequency at

increasingly higher velocities as the �� factor is increased in this range (1.0 - 1.4

��). With higher velocity there is greater damping in the lag mode, some of which

is transferred to the beam mode during the frequency coalescence. Little increase
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in damping is introduced into the chord mode because of the low velocity at which

those frequencies cross. Thus, for the cited range of �� factor, the chord mode

instability occurs before the beam mode instability.

The most signi�cant results of the rotor frequency study are that optimum


ap and lag frequencies exist which can signi�cantly increase the 
utter velocity

of tiltrotor systems. The 
utter velocity is shown in Figure 2.4 to increase from

1.23 to about 1.42 by increasing the 
ap frequency by a factor of 1.35, and in

Figure 2.5 from 1.23 to about 1.33 by increasing the lag frequency by a factor

of 1.35. These represent increases in 
utter velocity of about 13% for the 
ap

case and about 8% for the lag case. The results associated with tuning of the lag

frequency are especially important because tuning of the lag frequency has more

practical relevance than does tuning of the 
ap frequency. This is because tiltrotor

systems have been sti�-inplane so that an increase in inplane sti�ness would not

have a severe impact on loads.

It is also important to note that the stability improvements presented above

came about because of the coalescence of certain frequencies. The low rotor fre-

quencies (��1 and ��1) are important system design parameters, as their place-

ment with respect to each other as well as the fundamental wing modes can greatly

improve or degrade the stability of the system. Based on the rotor frequency study,

a general rule is to design the ��1 frequency to fall between the ��1 frequency

and the lowest fundamental wing mode in the velocity range preceding the 
utter

velocity. The lag frequency in this case couples with the 
ap frequency, delaying

its interaction with the wing modes. An even better solution is to have the low

lag frequency cross the lowest fundamental wing mode just as that mode begins

to coalesce with the low 
ap frequency. In this case, the damping of the wing

mode is increased by the lag mode, delaying the instability to a higher velocity.

For maximum in
uence, the lag frequency should cross the wing mode at the high-
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est possible velocity (but before the 
ap mode drives an instability). This will

maximize the damping in the lag mode which is then available to be transferred.

Based on the results of the above study, as well as results of other studies

not reported here, there are three main mechanisms which are responsible for

instability. These may be described as lag-dominated whirl 
utter, 
ap-dominated

whirl 
utter, and rotor resonance. In lag-dominated whirl 
utter, the lag mode

weakens the coupling of the 
ap and wing modes while increasing the coupling

between the 
ap and lag motions themselves. As a result, the stability of the

system is more sensitive to lag-motion-related forces than to 
ap-motion-related

forces. In 
ap-dominated whirl 
utter, the 
ap motion becomes highly coupled

with one or more wing modes and there is negligible coupling with the lag motion.

Rotor resonance is characterized by coalescence of the high-frequency 
ap and lag

modes, which results in an instability of the higher frequency mode.

2.4 Wing Frequency

The e�ects of the wing beam, chord, and torsion frequencies on tiltrotor stability

are examined in this section. The wing frequencies, as given in Table 2.1, are

altered through parametric variation of the wing baseline sti�nesses. In the �rst

part of this study, the variations are performed independently, as they were in the

rotor frequency study. In the second part of this study, combined changes in wing

sti�nesses are examined.

The results of independent variations of the three wing sti�nesses by factors

of .50 to 1.50 of the baseline value are shown in the plots of Figures 2.10-2.12.

The plots show the change in 
utter speed for each of the three wing modes for

each case. These results indicate that the 
utter velocity is more dependent on

the placement of the wing frequencies relative to each other than on the placement

of the wing frequencies relative to the rotor frequencies. This is most evident for
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the case of torsional sti�ness variation (Figure 2.10). The beam mode stability is

greatly reduced by a reduction in the torsion sti�ness. The rotor frequency study

showed that the beam stability changes relative to changes in the beam or rotor

frequencies. Since the rotor frequencies and beam mode frequency are unchanged

for variations of torsion sti�ness, the reduced beam mode stability must instead be

due to placement of the torsion frequency relative to the beam frequency. Based on

the above reasoning, the beam mode 
utter speed would be expected to decrease

rather than increase with an increase in beam sti�ness. This is indeed the case as

is illustrated in Figure 2.11.

The chord mode 
utter velocity is shown to increase with an increase in chord

sti�ness in Figure 2.12, while the 
utter velocities of the beam and torsion modes

remain relatively constant. The change in 
utter velocity of the chord mode is less

dramatic than was shown for the beam mode in the previous two cases. This is

because the chord mode is not highly coupled to either of the other two wing modes,

and the extent of sti�ness variation does not move the chord frequency above or

below the other wing frequencies. Since the chord mode is not highly coupled to

either the beam or torsion modes, placement of the chord mode frequency with

respect to the other wing frequencies is less important.

As was shown in Figure 2.2, the 
utter velocity of the baseline tiltrotor system

is about 1.23. In the next study, the combinations of wing sti�ness required to

maintain 
utter at V � = 1.23 are examined. Three 
utter boundaries, correspond-

ing to constant beam sti�ness values ranging from .50 to 1.50 of the baseline value,

are shown in Figure 2.13. Each curve represents the combination of torsion and

chord sti�ness (shown as a factor of the baseline value) required to maintain the

baseline 
utter velocity. As the beam sti�ness is increased the minimum required

torsion sti�ness also increases (for EIc above the 1.0 factor). This supports earlier

�ndings that stability is improved through increased separation between the beam
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and torsion frequencies. The plot also shows that the chord sti�ness requirements

are almost constant for GJ factors above about 0.8.

The most signi�cant result of the wing frequency study is that the wing torsion

to beam frequency ratio is an important design parameter for a tiltrotor system.

It is clear that the separation between these frequencies has greater importance

than the placement of the beam frequency relative to the rotor frequencies. If

this were not the case then the 
utter velocity would increase with an increase in

beam frequency (because of an increased separation between the 
ap and beam

frequencies) rather than decrease (because of increased participation of torsion

in the beam mode). It is also noteworthy that the chord frequency signi�cantly

in
uences only the chord mode V �

f . Thus, it is possible to improve the chord mode

V �

f independently of the beam mode V �

f , and vice versa. Since the chord mode

instability occurs at a velocity very close to that associated with the beam mode,

any design changes aimed at increasing the stability of the complete system must

take both modes into account.

2.5 Forward Swept Wing

This study examines the e�ects of sweeping the baseline wing forward. The pylon

and rotor system remains oriented in the 
ow direction the same as for a straight

wing. The sweep is varied while maintaining wing length (measured along the

elastic axis), streamwise chord length, and rotor radius constant. While both wing

length and rotor radius cannot be maintained constant with sweep on an actual

tiltrotor aircraft due to rotor-fuselage clearance requirements, this assumption is

employed in the analysis to isolate the e�ects of forward sweep. Divergence of

the system was considered, but was found to occur at velocities much higher than

those associated with 
utter, even at high wing sweeps. This is not surprising

beacuse 1) the wing sti�nesses associated with tilt rotors are much higher than
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that associated with conventional �xed wing aircraft, and 2) the 
utter boundaries

associated with tilt rotors are lower than those associated with conventional �xed

wing aircraft (primarily due to the large rotor 
apping motion).

The in
uence of wing forward sweep on 
utter is illustrated in Figure 2.14.

This plot shows that the beam and chord mode V �

f come together for the swept

wing, with a reduction in system 
utter velocity of about 8 percent over a sweep

from zero to -45�. The cause of this reduction has two possible sources: the change

in wing frequencies due to a shift in pylon mass or the change in perturbation force

components due to reorientation of the rotor with respect to the wing. The wing

frequencies are altered by the change in pylon �rst and second mass moments of

inertia in pitch about the wing elastic axis. This primarily e�ects the wing torsion

frequency which increases with sweep. Based on the wing frequency parametric

study, this should increase the beam mode V �

f because of the increased separation

between the beam and torsion frequencies. The plot of Figure 2.14 shows that

the beam mode V �

f is not increased. Hence, the wing frequency change must not

be the dominating in
uence for the beam or chord mode instabilities. This is

con�rmed in Figure 2.15 which shows the beam mode instability boundaries for

two cases: one with the normal orientation of the wing pylon in the 
ow direction

(and a corresponding decrease in torsion frequency) and one with the pylon mass

distribution remaining the same as for the straight wing (as if the pylon orientation

with respect to the wing was unchanged by sweep) such that the wing frequencies

are nearly constant with respect to sweep. As shown, the beam mode V �

f decreases

even further with the baseline wing frequencies, indicating that the wing frequency

changes associated with sweep have a stabilizing in
uence. The decrease in 
utter

velocity must then be attributed to a change in the destabilizing forces from the

rotor.

In Figures 2.16 and 2.17, the sti�ness changes required to maintain the straight
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wing 
utter velocity (V �

f = 1.23) for the swept wing are shown. The plot of Fig-

ure 2.16 shows that a substantial increase in chord sti�ness is required to maintain

V �

f = 1.23, while only a slight increase in torsional sti�ness is required. The chord

sti�ness increase maintains the chord mode V �

f while the torsion sti�ness increase

maintains the beam mode V �

f . Based on the results of the previous section, it might

be assumed that an increase in beam sti�ness is required to overcome the addi-

tional destabilizing force components associated with wing sweep if one desires to

maintain the straight wing 
utter velocity. However, the plot of Figure 2.17 shows

that a decrease in beam sti�ness of roughly 10-15% is required. The two plots

of Figures 2.16 and Figure 2.17 suggest that the ratio of wing torsion to beam

frequency is still an important factor even with wing sweep. The additional desta-

bilizing forces associated with wing sweep couple these two modes more than for

the straight wing case. While the coupling between the torsion and beam modes is

through the pylon and rotor mass o�set for the straight wing, these modes are ad-

ditionally coupled through the rotor system forces when wing sweep is introduced.

With increased coupling, the requirement for frequency separation between the

modes is increased. The wing sweep tends to increase the frequency separation,

but not enough to overcome the rotor force coupling e�ects, so the net e�ect is

decreased 
utter velocities. The torsion and beam modes remain largely uncou-

pled from the chord mode. For the chord mode, a substantial increase in chord

sti�ness is the only alternative for maintaining straight wing 
utter velocity at

large forward wing sweep angles.

2.6 Pitch-Flap Coupling

Pitch-
ap coupling is an important and necessary parameter for basic tiltrotor

designs because of 
ap clearance considerations. There are four basic methods for

obtaining adequate 
ap clearance of the blade from the wing. One is an adjustment
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of the mast length, the second is an increase of 
apping restraint, the third is

use of forward wing sweep, and the fourth is employment of kinematic pitch-
ap

coupling. Extension of the mast length is very destabilizing while increase of


apping restraint drives blade loads to an unacceptable level. The destabilizing

e�ects of forward wing sweep have been discussed in the previous section. The

employment of pitch-
ap coupling can signi�cantly reduce blade 
apping with

negligible e�ect on the blade loads, but it also has a destabilizing e�ect on stability.

Positive pitch-
ap coupling (here de�ned as blade 
ap up producing blade pitch

up) is given by negative �3 and decreases 
ap frequency while negative pitch-
ap

coupling is given by positive �3 and increases 
ap frequency.

The plot of Figure 2.18 shows the 
utter velocity boundaries associated with

changes of �3 (the baseline con�guration has �3 = -15�). This plot shows that

positive �3 is more suitable with respect to stability considerations than negative

�3, which is generally true for sti�-inplane rotor systems as reported by Ga�ey [6].

As shown, positive �3 results in a rotor instability at relatively low values of �3. This

instability is best explained by considering the blade frequencies in the rotating

system. The rotor instability is caused by resonance of the blade 
ap and lag

frequencies. The resonance occurs because the lag frequency of a sti�-inplane

rotor decreases with velocity (discussed in rotor frequency section) while the 
ap

frequency increases (because of positive �3) until at some velocity the two coincide.

With negative �3 the e�ective 
ap frequency decreases with velocity, so it never

meets the lag frequency in the velocity range of interest.

The plot of Figure 2.18 also shows that the mode of instability changes from

a chord mode at small negative �3 to a beam mode at large negative �3. While

both the chord and beam modes are stabilized with decreasing negative �3, the

beam mode is stabilized more than the chord mode because of increased separation

between the torsion and beam frequencies (decreased negative �3 increases the 
ap
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frequency which increases the torsion frequency). Consequently, there is a range

of negative �3 where the chord mode instability becomes critical.

2.7 Summary

The in
uences of several key system design parameters on tiltrotor aeroelastic

stability in the high-speed axial 
ight mode have been examined. The �ndings

have substantiated earlier work performed by other researchers as well as identi�ed

some new trends and the physical reasonings behind them. Some of the important

past conclusions which have been substantiated are as follows:

1. Beam and torsion frequency separation has a large in
uence on stability of

the beam mode.

2. Negative �3 is more e�ective than positive �3 with respect to stability con-

siderations for a sti�-inplane rotor system.

The results of this study have also identi�ed and explained at least two impor-

tant e�ects which have not been previously discussed in the open literature:

1. Lag frequency tuning appears to be a practical method for increasing axial


ight 
utter velocities. The blade lag frequency may be selected to reduce the

coupling of the ��1 and wing beam modes, thereby increasing the wing beam

mode damping.

2. An increase in forward wing sweep is destabilizing. This is because of

an increase in the rotor destabilizing force components in the beam and chord

directions. The wing frequency changes associated with the reorientation of the

pylon with sweep have a stabilizing in
uence on the beam mode, but this e�ect is

dominated by the rotor force changes.
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Table 2.1: Frequencies of the baseline system.

Rotating Blade

Freq. (per rev)

In Vacuum

�� 1.02

��0 1.85

�� see Figure 2.1

��0 0

Wing Freq. (per rev)

beam 0.42

chord 0.70

torsion 1.30
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Table 2.2: Important parameters of the baseline system.

Number of blades 3

Radius 12.5 ft.

Lock number 3.83

Solidity .089

Lift curve slope 5.7

Pitch/
ap coupling -.268

Tip speed 600 ft/sec

Rotational speed 48.0 rad/sec

Blade Inertias

Ib 105 slug-ft2

I�� 1.0

I��0 .779

I�� .670

I��0 .670

I�0 1.0

I��� 1.0

I��0� .787

S�� 1.035

S��0 1.212

M�

b 6.160

Blade Inertias for windmilling

I��0 1.0

I��0� 1.0

��0 0.0
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Table 2.3: Important parameters of the baseline wing.

Span, yw=R 1.333

Chord,cw=R .413

Mast height, h=R .342

No. of Elements 4

Value Root Element 2nd Element 3rd Element Tip Element

(+ Pylon)

Length, l=R 4.55 4.55 4.55 3.

Icg � (NIb2 ) 1. 1. 1. 63.3 cos2 �

S� � (NIb2 ) .05 .05 .05 9.09 cos �

Mass �(NIb
2
) 1. 1. 1. 14.54

EIb � (NIb
2

2
) 3.13e7 3.13e7 3.13e7 3.13e7

EIc � (NIb
2

2
) 8.48e7 8.48e7 8.48e7 8.48e7

GJ � (NIb
2

2
) 1.62e7 1.62e7 1.62e7 1.62e7

Aero. Center,e=c .051 .051 .051 0.
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Figure 2.1: Blade lag frequency as a function of velocity.

62



(b) Damping.
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Figure 2.2: Frequency and damping as a function of velocity for the baseline (1.0��,

1.0��) system.
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Figure 2.5: Flutter velocity as a function of �� factor.
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Figure 2.6: Frequency and damping as a function of velocity for 1.2��.
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Figure 2.7: Frequency and damping as a function of velocity for 1.5��.
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Figure 2.8: Frequency and damping as a function of velocity for 1.2�� .

69



(b) Damping.
0.5 1.0 1.5 2.00

ζ

V*

.05

.10

.15

0.5 1.0 1.5 2.00

1

2

3

Ω
ω β0

β+1 [p]

β−1 [r]

ζ+1 [p]

ζ−1 [r]
c
b

t

ζ+1 

ζ−1
β+1

β0

c

b

t

(a) Frequency.

β−1 [p]

V*

Figure 2.9: Frequency and damping as a function of velocity for 1.5�� .
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Chapter 3

Dynamic Analysis of Pretwisted

Elastically-Coupled Rotor Blades

This chapter will address the accuracy of using one-dimensional analysis for the

prediction of rotating beam frequencies of elastically-coupled, highly-twisted ro-

tor blades. There are three objectives for this study: 1) show that the degrees

of freedom associated with shear deformation may be statically condensed from

the analysis, 2) show that the nonclassical in
uences associated with cross-section

warping, which may become signi�cant as a result of elastic coupling, can be ac-

counted for without the incorporation of these e�ects explicitly in the rotating

beam analysis, and 3) determine the potential improvement in e�ciency by using

higher-order displacement approximations in a �nite element implementation. Be-

cause of these objectives, a new rotating blade analysis is formulated which is not

associated with the UMARC analysis. This new analysis is used to test the present

formulation so that only those concepts which prove e�ective are used in the next

level of forumlation, the full aeroelastic tiltrotor model derived in Chapters 4-7.

The potential for decoupling the local analysis from the global analysis was

discussed in Section 1.1.1. An explicit formulation for this approach is proposed

in the present chapter which considers the in
uence of nonclassical e�ects only on

80



the e�ective beam sti�ness properties and eliminates degrees of freedom associated

with shear deformation through static condensation. This formulation leads to a

rotating beam analysis based on only those degrees of freedom which have been

used for classical beam analyses. A second analysis, which should consider all the

possible nonclassical in
uences, but may be based on linear theory, is used to de-

termine the e�ective beam properties for the �rst analysis. If such an approach

is accurate for geometries and materials typical of rotor blades, then rotor anal-

yses based on isotropic materials and classical beam theory may be modi�ed to

incorporate composite materials and nonclassical e�ects.

A rotating beam analysis was developed based on a formulation of nonlin-

ear equations of motion and a �nite element implementation. The formulation is

derived to show how shear deformation and warping enter the theory. The formu-

lation is nonlinear as is required to capture the centrifugal sti�ening e�ects even

in the linearized form of the equations. The degrees of freedom associated with

shear deformation were eliminated through static condensation of the linear force-

displacement relationships. The linear part of the formulation was implemented as

a p-version beam �nite element such that the degree of polynomial approximation

for the bending, torsion, and axial displacements may be independently selected.

This implementation is described along with the results of a convergence study.

This convergence study shows the e�ciency of certain displacement approxima-

tions for a bending-twist-coupled beam.

Results of the present rotating beam analysis are compared with those produced

by Smith and Chopra [68] for a set of elastically-coupled rotor blades to show

that static condensation of the shear degrees of freedom is valid for the modes

considered. Attention is then focused on nonclassical e�ects (shear deformation

and warping) and their in
uence on the prediction of both rotating and nonrotating

frequencies for elastically-coupled and highly-twisted beams. Comparisons are
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made with experimental results obtained by Chandra [77], 1-D analytical results

obtained with UMARC as presented by Smith and Chopra [68], and 3-D analytical

results obtained using the analysis of Hinnant [78].

3.1 Energy Formulations

For the formulation of strain and kinetic energy, the blade is assumed to be a long

and slender beam, and constructed from anisotropic materials such that displace-

ment modes may be elastically coupled. The blade may deform in extension ue,

lag bending v, 
ap bending w, and torsion �, and both built-in pretwist and elastic

twist deformation may be large. The equations of motion are formulated based on

the form of Hamilton's variational principle typically used in rotor analysis,

�� =
Z t2

t1

(�U � �T � �W ) dt = 0 (3:1)

The potential energy variation �U is developed entirely by the elastic strain of

deformation, the kinetic energy variation �T is developed from blade velocity terms,

and the work variation �W is zero in the present formulation (no external loading

is considered, the system is conservative).

As the formulation presented here is nonlinear and explicit, the number of terms

in the energy expressions can quickly grow to an unmanageable size. Further, many

of the terms may be negligible compared to other important terms. To reduce the

number of terms to only those of signi�cance, an ordering scheme is employed where

terms of O(�n+2) and higher are eliminated in the presence of terms of O(�n). All

displacement variables de�ned in this formulation are assigned an order of � with

two exceptions. The axial displacement ue is of order �
2 and the twist deformation

� is of order one. The latter exception results from making the analysis accurate

for rotor blades with very large elastic couplings associated with twist deformation.
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3.1.1 Geometry and Coordinates

The present formulation considers only the shaft-�xed response (no hub degrees of

freedom. The hub motion and other tiltrotor related parameters will be considered

in Chapters 4-7. The shaft-�xed formulation requires four coordinate systems.

The inertial coordinate system is aligned with the shaft as shown in Figure 3.1.

A rotating reference frame (Îr,Ĵr,K̂r) has the same origin as the inertial reference

frame, but rotates with the blade such that its x-axis is in the plane of rotation.

An undeformed-blade reference frame (Îu,Ĵu,K̂u) is de�ned with its x-axis directed

along the elastic axis of the undeformed blade as shown in Figure 3.2. The elastic

part of the blade is o�set from the center of rotation a distance hxÎU . A cross-

section reference frame (Îc,Ĵc,K̂c) is de�ned with origin at an arbitrary position

(hx+x)Îu along the elastic axis of the blade, and with origin on that axis acting as

the reference point for the cross section. The unit vector Ĵc is directed along the

chord direction of the blade cross section while K̂c is de�ned by the cross product

of Îc and Ĵc. Thus, the cross-section system is an orthonormal vector set which is

rotated by the amount of twist associated with an arbitrary spanwise location of

the undeformed blade. A deformed reference frame (Îd,Ĵd,K̂d) is identical to the

cross-section set before deformation, but translates and rotates with the bending

and twist of the rigid cross section plane to a new position after deformation.

The unit vector triads of each coordinate system are related by the following

equations:

8>>>>><
>>>>>:

Îr

Ĵr

K̂r

9>>>>>=
>>>>>;

= [Tri]

8>>>>><
>>>>>:

Îi

Ĵi

K̂i

9>>>>>=
>>>>>;

(3.2)

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

= [Tur]

8>>>>><
>>>>>:

Îr

Ĵr

K̂r

9>>>>>=
>>>>>;

(3.3)
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8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;

= [Tcu]

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

(3.4)

8>>>>><
>>>>>:

Îd

Ĵd

K̂d

9>>>>>=
>>>>>;

= [Tdc]

8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;

(3.5)

where the transformations matrices are given by:

[Tri] =

2
666664

cos sin 0

� sin cos 0

0 0 1

3
777775 (3.6)

[Tur] =

2
666664
cos �P 0 �sin�P
0 1 0

sin �P 0 cos �P

3
777775 (3.7)

[Tcu] =

2
666664
1 0 0

0 cos �0 sin �0

0 � sin �0 cos �0

3
777775 (3.8)

The transformation between the deformed and cross-section systems [Tdc] is derived

later in this chapter.

3.1.2 Strain Energy Derivation

Consider the position of a point on the cross-section of a rotor blade before defor-

mation with position vector given by

~r0 = (hx + x)Îc + �Ĵc + �K̂c (3:9)

After deformation, the position vector is given by

~R = ~R0 + ~RE + ~RW (3:10)
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where ~R0 represents deformed position of the cross section reference point, ~RE

represents deformation associated with the rigid rotation of the cross section, and

~RW represents deformation associated with warping of the cross section. The

position vectors are de�ned as follows:

~R0 = (hx + x+ u0)Îc + v0Ĵc + w0K̂c (3.11)

~RE = 0Îc + �Ĵc + �K̂c (3.12)

~RW = WuÎc +W�Ĵc +W�K̂c (3.13)

where Wu, W�, and W� are warping displacements de�ned as

Wu = u0 uA + w0

cs
 uQ� + �� uM�

+ v0cs uQ� + �� uM�
+ �0 uT (3.14)

W� = u0 �A + w0

cs
 �Q� + �� �M�

+ v0cs �Q� + �� �M�
+ �0 �T (3.15)

W� = u0 �A + w0

cs
 �Q� + �� �M�

+ v0cs �Q� + �� �M�
+ �0 �T (3.16)

where subscript s denotes shear strains due to shear deformation and � is rotation

due to bending. The warping terms represent nonclassical contributions to the

displacements as a result of cross section deformation. The notation for the warping

 ij gives the displacement in the direction i associated with a load j, and the

magnitude of the displacement in the i direction is shown to be proportional to

the displacement associated with the load direction. The displacements associated

with warping are in general small for beam structures, with only a few exceptions.

The most well-known exception is the out-of-plane warping associated with torsion

of noncircular beams ( uT in the present formulation). With a completely general

approach to anisotropic beam theory, any of the 18 warping terms shown above

could be signi�cant for a particular con�guration. Thus, for the general approach,

all of the warping terms would be maintained within the ordering scheme, even

though for most practical cases all but a few terms could be eliminated.

However, rotorcraft aeroelastic analysis, based on one-dimensional beam mod-

eling, generally only requires knowledge of the global blade behavior, and as such
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the warping displacements need not be included explicitly in the aeroelastic formu-

lation. The important contribution of warping has been shown in past studies to

be a reduction in the e�ective beam sti�nesses. The warping unnecessarily compli-

cates development of the one-dimensional analysis and will be eliminated except

for some key terms which have been shown to be important, even for isotropic

beams. The other e�ects of warping can be captured in a detailed cross section

(local) analysis which is uncoupled from the beam (global) analysis.

The warping terms which are retained are the out-of-plane torsion-related warp-

ing  uT , and the two out-of-plane shear-related warping terms  uQ� and  uQ� . If

the Timoshenko-type shear deformation model is applied (the cross section is as-

sumed to remain plane), then  uQ� = � and  uQ� = �. The deformed position

vector is then rewritten with ~Rw = [�0 uT + v0cs� + w0

cs
�]Îc as

~R = (fhx + x+ u0; v0; w0g+ f(�0 uT + v0cs� + w0

cs
�); �; �g[Tdc])

8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;
(3.17)

where Tdc is the transformation matrix between the deformed and cross-section

coordinate systems, and will be derived in the next paragraph.

The sequence of rotations for transformation from the undeformed cross-section

axis system to the deformed axis system is f�� , -�� ,�g where �� is the Euler bending
rotation in the lead-lag plane (given no pretwist), �� is the Euler bending rotation

in the 
apwise plane (given no pretwist), and � is the elastic twist which may be

a large angle. The transformation matrix is then de�ned as

[Tdc] =

2
666664
1 0 0

0 cos� sin�

0 � sin� cos�

3
777775

2
666664

1 0 ���
0 1 0

�� 0 1

3
777775

2
666664

1 �� 0

��� 1 0

0 0 1

3
777775 (3.18)

where the small angle assumption has been employed for the bending rotations.
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The rotations may be written in terms of the cross-section kinematic variables as

�� = (vc;x � �;xwc)Ĵc (3.19)

��� = (wc;x + �;xvc)K̂c (3.20)

which, when substituted into Eqn. 3.18, gives the transformation matrix as

[Tdc] =

2
6666666666666666666664

1 v0c � wc�
0

0 w0

c + vc�
0

0

�(v0c � wc�
0

0) cos�

�(w0

c + vc�
0

0) sin�

�c sin�

+cos�

sin�

�(w0

c + vc�
0

0) cos�

+(v0c � wc�
0

0) sin�

�c cos�

� sin�

cos�

3
7777777777777777777775

(3:21)

where,

�c = �(v0c � wc�
0

0)(w
0

c + vc�
0

0) (3:22)

This transformation agrees with that of Kosmatka [55] if � is assumed to be a

small angle.

The strains are developed in terms of the displacements by substituting the

derivatives of the position vectors into the strain component de�nitions as given in

Wempner [80]. The position vectors have been de�ned in terms of the cross-section

coordinates, and the derivatives were calculated as follows:

~r;x = f1; 0; 0g (3.23)

~r;� = f0; 1; 0g (3.24)

~r;� = f0; 0; 1g (3.25)

~R;x = fGx1; Gx2; Gx3g (3.26)

~R;� = fG�1; G�2; G�3g (3.27)

~R;� = fG�1; G�2; G�3g (3.28)
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where the Gi terms are de�ned within the ordering scheme as:

Gx1 = 1 + u0c � ��� � ��� + �0 [(�v0c + �w0

c � �vc�
0

0 � �wc�
0

0) cos�

+ (�v0c + �w0

c + �vc�
0

0 � �wc�
0

0) sin�] + (�0 uT )
0 (3.29)

Gx2 = v0c � wc�
0

0 � �0[� cos�+ � sin�] (3.30)

Gx3 = w0

c + vc�
0

0 + �0[� cos�� � sin�] (3.31)

G�1 = v0cs � (v0c � wc�
0

0) cos�� (w0

c + vc�
0

0) sin�+ �0 uT;� (3.32)

G�2 = cos�+ (vcwc�
02
0 � vcv

0

c�
0

0 + wcw
0

c�
0

0 � v0cw
0

c) sin� (3.33)

G�3 = sin� (3.34)

G�1 = w0

cs
� (w0

c + vc�
0

0) cos�+ (v0c � wc�
0

0) sin�+ �0 uT;� (3.35)

G�2 = � sin�+ (vcwc�
02
0 � vcv

0

c�
0

0 + wcw
0

c�
0

0 � v0cw
0

c) cos� (3.36)

G�3 = cos� (3.37)

and the curvatures are given by

�� = (v00c � wc�
00

0 � 2w0

c�
0

0 � vc�
02
0 ) cos�+

(w00

c + vc�
00

0 + 2v0c�
0

0 � wc�
02
0 ) sin� (3.38)

�� = (w00

c + vc�
00

0 + 2v0c�
0

0 � wc�
02
0 ) cos��

(v00c � wc�
00

0 � 2w0

c�
0

0 � vc�
02
0 ) sin� (3.39)

where �� is the curvature in the 
apwise plane and �� is curvature in the lead-

lag plane. The strain component de�nitions simplify, after substitution of the

undeformed position vectors, to

�xx = (R̂;x � R̂;x � 1)=2 (3.40)

�x� = (R̂;x � R̂;�) (3.41)

�x� = (R̂;x � R̂;�) (3.42)

��� � ��� � ��� � 0 (3.43)
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where �x� and �x� are the engineering form of the shear strains. The three nonzero

strains are calculated by carrying out the dot products. These strains are shown

after application of the ordering scheme in terms of the displacements de�ned in

the cross-section system.

�xx = u0c +
1

2
(v0c � wc�

0

0)
2 +

1

2
(w0

c + vc�
0

0)
2 � ��� � ��� +

1

2
(�2 + �2)�02 + (�0 uT )

0 (3.44)

�x� = v0cs + ( uT;� � �)�0 (3.45)

�x� = w0

cs
+ ( uT;� + �)�0 (3.46)

These strains are de�ned in terms of the blade coordinate system through use of

the transformation [Tcu] as

�xx = u0 +
1

2
v02 +

1

2
w02 +

1

2
(�2 + �2)�02 � v00[� cos(�0 + �)� � sin(�0 + �)]

�w00[� sin(�0 + �) + � cos(�0 + �)] + (�0 uT )
0 (3.47)

�x� = v0s cos(�0 + �) + w0

s sin(�0 + �) + ( uT;� � �)�0 (3.48)

�x� = w0

s cos(�0 + �)� v0s sin(�0 + �) + ( uT;� + �)�0 (3.49)

At this point a variable substitution is made which eliminates the kinematic contri-

bution of foreshortening from the axial displacement. It has been shown by Kaza

and Kvaternik [50] that this substitution provides the convenience of developing

centrifugal sti�ening terms associated with foreshortening in the kinetic energy

formulation rather than in the strain energy formulation. The substitution is

u0e = u0 +
1

2
v02 +

1

2
w02 (3:50)

where u0e represents the elastic axial strain without kinematic contributions from

transverse bending displacements. The contributions of these displacements will

reappear in the formulation of kinetic energy when the variable substitution is

carried through into that derivation. The strain components then become in �nal
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form:

�xx = u0e +
1

2
(�2 + �2)�02 + (�0 uT )

0 � v00[� cos(�0 + �)� � sin(�0 + �)]

�w00[� sin(�0 + �) + � cos(�0 + �)] (3.51)

�x� = v0s cos(�0 + �) + w0

s sin(�0 + �) + ( uT;� � �)�0 (3.52)

�x� = w0

s cos(�0 + �)� v0s sin(�0 + �) + ( uT;� + �)�0 (3.53)

The variation of the elastic strain energy is given by

�U=
Z R

0

ZZ
A
f�xx��xx + �x���x� + �x���x�g d�d�dx (3:54)

and elastic stress-strain relationships employed in this formulation are given by

8>>>>><
>>>>>:

�xx

�x�

�x�

9>>>>>=
>>>>>;
=

8>>>>><
>>>>>:

Q0

11 Q0

15 Q0

16

Q0

15 Q0

55 Q0

56

Q0

16 Q0

56 Q0

66

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

�xx

�x�

�x�

9>>>>>=
>>>>>;

(3:55)

where the Q0

ij represent the material sti�ness at a location in the cross section. The

material sti�nesses are an average value based on the individual ply material and

orientation, and also depend on the orientation of the laminate with respect to the

cross section axes. The stress-strain relations are substituted into the strain energy

variational, followed by a second substitution of the strain-displacement relations

(Eqns. 3.51-3.53) for the strains. After integrating over the area, the strain energy

variation becomes

�U =
Z R

0
�̂vikij v̂j dx+

Z R

0
�̂viDi dx (3:56)

where (i; j = 1; 9), and the strain vector is de�ned as:

�̂vi =

�
�u0e �v

0 �v00 �w0 �w00 �� ��0 �v0s �w
0

s

�
(3:57)

The �rst integral of Eqn. 3.56 represents the linear part of the strain energy and the

second term represents the nonlinear contribution to the strain energy. The diag-

onal and nonzero o�-diagonal terms of the symmetric linear cross section sti�ness
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matrix are listed as follows:

k11 = EA (3.58)

k13 = �EAccos�1 (3.59)

k15 = �EAcsin�1 (3.60)

k17 = EET + EAr2�
0

0 (3.61)

k18 = EESccos�1 � EESfsin�1 (3.62)

k19 = EEScsin�1 + EESfcos�1 (3.63)

k22 = 0 (3.64)

k33 = EIccos
2�1 + EIfsin

2�1 (3.65)

k35 = EIfcos�1sin�1 � EIfcos�1sin�1 (3.66)

k37 = ETCcos�1 � ETF sin�1 (3.67)

k38 = (EFSc + ECSf )cos�1sin�1 (3.68)

k39 = EFScsin
2�1 � ECSfcos

2�1 (3.69)

k44 = 0 (3.70)

k55 = EIfcos
2�1 + EIcsin

2�1 (3.71)

k57 = ETF cos�1 + ETCsin�1 (3.72)

k58 = ECSfsin
2�1 � EFSccos

2�1 (3.73)

k59 = �(EFSc + ECSf )cos�1sin�1 (3.74)

k66 = 0 (3.75)

k77 = GJ (3.76)

k88 = GAccos
2�1 +GAfsin

2�1 (3.77)

k89 = (GAc �GAf )cos�1sin�1 (3.78)

k99 = GAfcos
2�1 +GAcsin

2�1 (3.79)

with �1 = �0+� and the cross section integrals given as follows: the classical cross
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section properties,

EA =
Z Z

A
Q0

11 d� d� (3.80)

EAc =
Z Z

A
Q0

11� d� d� (3.81)

EAr2 =
Z Z

A
Q0

11(�
2 + �2) d� d� (3.82)

EIc =
Z Z

A
Q0

11�
2 d� d� (3.83)

EIf =
Z Z

A
Q0

11�
2 d� d� (3.84)

GJ =
Z Z

A
[Q0

55( uT;� + �)2 +Q0

66( uT;� � �)2

+2Q0

56 uT;� + �)( uT;� � �)] d� d� (3.85)

the shear-related sti�nesses,

GAc =
Z Z

A
Q0

55 d� d� (3.86)

GAf =
Z Z

A
Q0

66 d� d� (3.87)

the anisotropic material coupling sti�nesses,

EET =
Z Z

A
Q0

15 uT;� + �) +Q0

16 uT;� � �) d� d� (3.88)

ETC =
Z Z

A
[Q0

15 uT;� + �) +Q0

16 uT;� � �)]� d� d� (3.89)

ETF =
Z Z

A
[Q0

15 uT;� + �) +Q0

16 uT;� � �)]� d� d� (3.90)

the shear-related anisotropic material coupling sti�nesses,

EESc =
Z Z

A
Q0

15 d� d� (3.91)

EESf =
Z Z

A
Q0

16 d� d� (3.92)

ECSf =
Z Z

A
Q0

16 � d� d� (3.93)

EFSc =
Z Z

A
Q0

15 � d� d� (3.94)

and because symmetry in geometry and Q0

11 is assumed about the chord line, the

following section properties become zero,Z Z
A
Q0

11 � d� d� = 0 (3.95)Z Z
A
Q0

11 �� d� d� = 0 (3.96)
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Anisotropic material properties containing � to the �rst power are not assumed

to be zero because Q0

15 and Q
0

16 may 
uctuate greatly about the chord line. The

shear-related properties are separated in the above organization of cross section

properties because these parameters would not exist without considering shear

deformation. It is shown that these properties couple the classical beam deforma-

tions with the shear deformations when anisotropic material layups are considered

(Q0

15 and Q
0

16 not zero). Also, the anisotropic material sti�nesses couple the clas-

sical beam deformations within themselves when anisotropic material layups are

considered.

The possibility of material coupling of classical beam deformations with shear

deformations makes it necessary to included these degrees of freedom in an anisotropic,

rotating-beam, dynamic analysis. However, it may be possible to include the shear

deformation e�ects implicitly using static condensation. The argument for static

condensation of the linear sti�ness matrix to eliminate the shear degrees of free-

dom is presented next. First, eliminate the second, fourth, and sixth rows and

columns of kij because the strain energy terms associated with �v0,�w0, and �� are

zero. The linear sti�ness matrix kij can thus be reduced to a 6x6 coupled sti�ness

matrix with diagonal sti�nesses corresponding to an axial sti�ness, two bending

sti�nesses, a torsional sti�ness, and two shear sti�nesses. For a static problem, the

force-displacement relationship may be written as:2
666666666666666664

Qx

Qy

Qz

Mx

�My

Mz

3
777777777777777775

= [kij]

2
666666666666666664

u0e

v0s

w0

s

�0

w00

v00

3
777777777777777775

(3:97)

where Q are forces in the directions indicated by subscripts and M are moments

about directions indicated by subscripts. Notice that the displacement vector has
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been temporarily rearranged to clarify the force part of the relationship. This

relationship may be simpli�ed for beam behavior by eliminating the shear-related

degrees of freedom. As was shown by Hodges et al. [63] it is proper to assume

the shear forces associated with the shear deformation are zero, but not the shear

strains because of the presence of coupling terms. With Qy and Qz set to zero, the

shear deformations may be removed through static condensation. This amounts

to eliminating the rows and columns associated with shear from the compliance

matrix rather than from the sti�ness matrix. The compliance matrix is formulated

by inverting the 6x6 cross-section sti�ness matrix,

Sij = k�1
ij

and after elimination of the second and third rows and columns may be written as

2
6666666664

u0e

�0

w00

v00

3
7777777775
= [S 0ij]

2
6666666664

Qx

Mx

�My

Mz

3
7777777775

(3:98)

The bending-related compliance terms include the 
exibility associated with any

shear coupling present in the cross-section. The 4x4 compliance matrix is then

inverted to obtain the desired 4x4 form of the fully-coupled cross-section sti�ness

matrix k0ij, which implicitly includes shear deformation e�ects. The term kij is thus

replaced by k0ij in Eqn. 3.56, and the vector of continuous displacement variations

is reduced to

�̂vi =

�
�u0e �v00 �w00 ��0

�
(3:99)

This cross-section sti�ness matrix is applicable to the dynamic problem assuming

the dynamic e�ects associated with shear deformation are small.

Now, it may be further shown that the static condensation operation on the

cross-section sti�ness matrix serves only to reduce the e�ective sti�ness properties
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of the diagonal terms. Furthermore, the operation is independent of the twist

angle �1 since it only involves the cross-section properties themselves. The reduced

sti�ness matrix can thus be written as

k011 = �EA (3.100)

k012 = � �EA�cos�1 (3.101)

k013 = � �EA�sin�1 (3.102)

k014 = EET + �EAr2�
0

0 (3.103)

k022 = �EIccos
2�1 + �EIfsin

2�1 (3.104)

k023 = �EIfcos�1sin�1 � �EIfcos�1sin�1 (3.105)

k024 = ETCcos�1 � ETF sin�1 (3.106)

k033 = �EIfcos
2�1 + �EIcsin

2�1 (3.107)

k034 = ETF cos�1 + ETCsin�1 (3.108)

k044 = �GJ (3.109)

where the classical sti�ness terms EA;EIf ; EIc; and GJ have been statically con-

densed at �1 = 0 into the e�ective sti�ness properties �EA; �EIf ; �EIc; and �GJ . Notice

that the coupling sti�nesses related to anisotropic material properties, EET;ETC;

and ETF , are una�ected by the condensation. The structural-based coupling prop-

erties (those based on twist and neutral-axis o�sets) are a�ected because of their

dependence on the classical beam sti�nesses. The important aspect of develop-

ing the cross-section sti�ness matrix based on the e�ective sti�nesses is that it

is possible to obtain the e�ective sti�nesses and coupling sti�nesses directly from

sophisticated cross-section analyses. These analyses generally perform a static

condensation or some equivalent operation internally, providing sti�nesses based

on material compliance. These \e�ective" properties can then be adopted for the

twisted blade using Eqns. 3.100-3.109.

The nonlinear sti�ness matrix from Eqn. 3.56 can also be written in terms of
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these e�ective beam properties, and is given as:

D1 = EETv00w0 (3.110)

D2 = 0 (3.111)

D3 = �GJ�0w0 + EETu0ew
0 + �GJv00w02 + 2ETCv00w0cos�1 +

ETFw0w00cos�1 � 2ETFv00w0sin�1 + ETCw0w00sin�1 (3.112)

D4 = �GJ�0v00 + EETu0ev
00 + �GJv00

2
w0 + ETCv00

2
cos�1 +

ETFv00w00cos�1 � ETFv00
2
sin�1 + ETCv00w00sin�1 (3.113)

D5 = ETFv00w0cos�1 + ETCv00w0sin�1 (3.114)

D6 = �ETF�0v00cos�1 � ETFv00
2
wpcos�1 + ETC�0w00cos�1 +

ETCv00w0w00cos�1 � �EIfv
00w00cos2�1 + �EIcv

00w00cos2�1 �

ETC�0v00sin�1 + �EA�u
0

ev
00sin�1 � ETCv00

2
w0sin�1 �

ETF�0w00sin�1 � ETFv00w00w0sin�1 + �EIfv
002cos�1sin�1 �

�EIcv
002cos�1sin�1 � �EIfw

002cos�1sin�1 + �EIcw
002cos�1sin�1 +

�EIfv
00w00sin2�1 � �EIcv

00w00sin2�1 (3.115)

D7 = �GJv00w0 (3.116)

(3.117)

where i of the Di in this case correspond to the variational displacement vector

minus the shear degrees of freedom:

�̂vi =

�
�u0e �v

0 �v00 �w0 �w00 �� ��0
�

(3:118)

3.1.3 Kinetic Energy Derivation

The position of a point on the deformed blade as given by Eqn. 3.17 may be written

using the blade reference displacements and neglecting the warping displacements
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as

~R = (fhx + x+ u; v; wg+ fo; �; �g[Tdu])

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

(3:119)

where [Tdu] is the transformation between the deformed and undeformed-blade

coordinate systems which is given by

[Tdu] = [Tdc][Tcu] (3:120)

The velocity of a point on the deformed blade is written as

~V =
@ ~R

@t
+ ~
� ~R (3:121)

where

~
 = f
x;
y;
zg

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;
= f0; 0;
0g[Tri]T [Tru]T

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

(3.122)

and 
0 is the rotation rate at which the hub spins about the inertial zi axis. If

there is no precone then 
x = 
y = 0. After application of the ordering scheme,

the velocity is given by

~V = fVx; Vy; Vzg

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

(3:123)

Vx = _u+ w
y � v
z � (
z + _v0)� cos �1 + (
y � _w0)� cos �1 + �
y sin �1

+
z� sin �1 + � cos �1v
0 _�+ � sin �1v

0 _�� � cos �1w
0 _�� � sin �1w

0 _�

+� sin �1 _w
0 + � sin �1 _v

0 (3.124)

Vy = _v � w
x + (hx + x+ u)
z � 
z�v
0 cos �1 � 
x� cos �1 � � _� cos �1 �


z�w
0 cos �1 � 
x� sin �1 � � _� sin �1 � 
z�w

0 sin �1 + 
z�v
0 sin �1(3.125)

Vz = _w + v
x � (hx + x+ u)
y + 
x� cos �1 + 
y�v
0 cos �1 + � _� cos �1 +


y�v
0 cos �1 + 
y�w

0 sin �1 � � _� sin �1 � 
x� sin �1 � 
y�v
0 sin �1 (3.126)
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where �1 = �0 + �. After taking the variation of the velocity, the following substi-

tutions, which are based on Eqn. 3.50, are made into ~V and �~V .

_u = _ue �
Z x

0
(v0 _v0 + w0 _w0) d� (3.127)

�u = �ue �
Z x

0
(v0�v0 � w0�w0) d� (3.128)

The variation of the blade kinetic energy is given by

�T =
Z R

0

ZZ
A
�~V � �~V d�d� dx (3:129)

where � is the mass density of the blade. After substituting the velocity as de�ned

in Eqn. 3.123 into the kinetic energy expression, calculating the velocity variation,

and carrying out the dot product, the variation of the kinetic energy may be written

as Z R

0
mf[Tu]i �̂ui + [T _u]i �̂_ui ++TFg dx (3:130)

where (i = 1; 6) and the vector of displacement variations for the kinetic energy

formulation is given by,

�̂ui = f �ue �v �v0 �w �w0 �� g (3:131)

The quantities [Tu]i and [T _u]j represent groups of terms which may be functions

of both u and _u. TF represents additional terms in the kinetic energy which result

from the integral part of the variation substitution for �ue, and after application

of the ordering scheme may be written as:

TF = �(x+ 2 _v)
Z x

0
(v0�v0 + w0�w0) d� + 2�v

Z x

0
(v0 _v0 + w0 _w0) d� (3:132)

The contribution of TF to the kinetic energy is then given by
R 1
0 mTFdx which after

the appropriate substitutions gives

Z R

0
mTFdx =

Z 1

0
m[�(x+ 2 _v)

Z x

0
(v0�v0 + w0�w0)d� +

2�v
Z x

0
(v0 _v0 + w0 _w0) d�]dx (3.133)
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Integration by parts yields a more convenient form for the foreshortening contri-

bution to kinetic energy as

Z R

0
mTFdx = �(FA + Fcor)(v

0�v0 + w0�w0)

+2�v
Z x

0
(v0 _v0 + w0 _w0) d� (3.134)

where

FA =
Z R

x
mx d� (3.135)

Fcor =
Z R

x
2m _v d� (3.136)

The terms associated with FA re
ect the centrifugal sti�ening e�ects on the 
ap

and lag equations while the terms associated with Fcor re
ect the nonlinear Coriolis

damping e�ects in those equations. The terms associated with FA and Fcor are

added to Tv02 and Tw02 , which allows the linear contribution to the kinetic energy

variation to be written as

�Tlin =
Z R

0
f�_̂uimij

_̂uj + �_̂uicijûj + �̂uikijûj) dx (3:137)

A more useful form of the above expression is obtained by integrating the varia-

tion in kinetic energy by parts over time. This can be done because in applying

Hamilton's principle the variation in kinetic energy will be integrated in time. By

temporarily switching the order of integration, the integration by parts can be

performed. Z t2

t1

Z 1

0
�_uimij _ujdx dt =

Z 1

0

Z t2

t1

�_uimij _ujdt dx =

Z 1

0
(�uimij _uj

t2

t1
�
Z t2

t1

�uimij�uj dt) dx = �
Z t2

t1

Z 1

0
�uimij�uj dx dt (3:138)

After a similar operation on the damping term of Eqn. 3.137, the linear variation

of kinetic energy becomes

�Tlin =
Z R

0
�̂uifmij

�̂uj + cij _̂uj + kijûjg dx (3:139)
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with the vector of displacement variations for the kinetic energy formulation given

by

�̂ui = f �ue �v �v0 �w �w0 �� g (3:140)

mij is the mass matrix which includes rotational inertias, cij is the linear damping

matrix, and kij is the linear sti�ness matrix which contains the centrifugal sti�ening

terms of nonlinear origin.

3.2 Implementation

The linear parts of the strain and kinetic energies de�ned in Eqns. 3.56 and 3.139

were used to develop a p-version beam �nite element so that the degree of poly-

nomial approximation for the bending, torsion, and axial displacements may be

independently selected. Integrations over the element length were performed sym-

bolically to increase computational e�ciency of the analysis. The �nal form of the

rotating blade equations after application of Hamilton's principle in discretized

form is given by

Mij �qj + Cij _qj +Kijqj = 0 (3:141)

where Mij, Cij, and Kij are the element mass, damping, and sti�ness matrices,

respectively. qj represents the vector of discrete displacements. The elements

are assembled to form a global system which is solved using standard eigenvalue

techniques to obtain modes and frequencies. Further description of the beam

element formulation is provided in this section.

The present formulation is implemented as a beam �nite element. Many past

analyses for rotating blades have used this approach, but the order of polynomials

used to approximate the displacements has varied. The analysis of Kosmatka [55]

uses a quadratic torsion and axial approximation along with cubic Hermitian poly-

nomials for bending. This set of assumptions provides the same level of accuracy
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in the torsion and axial deformations as in the bending deformations. The analyses

of Hong and Chopra [65,66] and Smith and Chopra [68] use similar displacement

polynomials, but with a cubic axial approximation, developed as a mean for im-

proving the axial mode predictions.

A higher-order element capability was developed for the dynamic analysis of

beams in the GRASP code (Hodges et. al. [81]). In this code the user could inde-

pendently increase the order of polynomial approximation of each displacement to

match the physical characteristics of the beam. This is the so-called p-version �nite

element approach, and seems ideally suited for application to analysis of elastically-

coupled beams because of the dramatic in
uence elastic couplings have on beam


exibility in some displacement modes. The study of Hinnant [82] demonstrated

that, given proper modeling of the beam geometry, there is also substantial savings

to be gained by use of p-version elements in terms of total number of degrees of

freedom required to obtain an accurate solution.

3.2.1 Finite Element Discretization

The linear parts of the strain and kinetic energies as de�ned in Eqns. 3.56 and 3.139

are used to develop a p-version beam �nite element. The continuous displacements

which appear in these expressions are u, v, w, and �, and are functions of both x

and time. The continuous problem is discretized by introducing discrete degrees

of freedom qi which are related to the continuous displacements according to

u =
PuX
i=1

Nu
i q

u
i (3.142)

v =
PvX
i=1

N v
i q

v
i (3.143)

w =
PwX
i=1

Nw
i q

w
i (3.144)

� =

P�X
i=1

N
�
i q

�
i (3.145)
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where Ni are shape functions de�ned later in this section. Substitution of these

equations into Eqns. 3.56 and 3.139 gives the strain and kinetic energies in terms of

the discrete degrees of freedom. The virtual energy expression de�ned in Eqn. 3.1

may also be written in discretized form as

�� =
Z t2

t1

"
NX
i=1

(�Ui � �Ti)

#
dt (3:146)

where N is the number of spatial elements used to discretize the elastic blade.

Each element is represented using the discrete displacements as

�U � �T = �qTi fMij �qj + Cij _qj +Kijqjg (3:147)

where the element mass, damping, and sti�ness matrices are de�ned by

Mij =
Z R

0
BikmklBlj dx (3.148)

Cij =
Z R

0
BikcklBlj dx (3.149)

Kij =
Z R

0
(AikkklAlj dx�BikkklBlj) dx (3.150)

where Bik = BT
lj and Aik = ATlj. B is a matrix of shape functions and shape

function derivatives which satis�es the relationship

ui = (DT )ij[ûj] = (DT )ij[Hjkqk] = Bikqk (3:151)

where ûj is a vector of the continuous degrees of freedom u, v, w, and �. DT

is a matrix of derivative operators associated with the kinetic energy formulation

and H is a matrix of shape functions whose arrangement depends on the selection

of discrete variables in q, and satis�es Eqns. 3.142-3.145. The de�nition of Aij is

similar to that of Bij except that it is associated with the strain energy formulation.

Thus, B may be replaced by A and subscripts of T may be replaced by V in

Eqn. 3.151.

The discrete degrees of freedom are divided into two sets, external and internal.

There are twelve external degrees of freedom which have physical signi�cance as the
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displacements and rotations associated with the ends of the beam �nite element

(six on each end). These deformations are depicted in Figure 3.3. The shape

functions for Nu
i and N�

i are identical and have C0-type continuity. There are two

well-known linear polynomials used to de�ne this set:

N0
1 = 1� x

l
(3.152)

N0
2 =

x

l
(3.153)

whereNu
i = N

�
i = N0

i . The shape functionsN
v
i andN

w
i require C1-type continuity.

These shape functions are given by:

N1
1 = 2

x3

l3
� 3

x2

l2
+ 1 (3.154)

N1
2 =

x3

l2
� 2

x2

l
+ x (3.155)

N1
3 = �2x

3

l3
+ 3

x2

l2
(3.156)

N1
4 =

x3

l2
� x2

l
(3.157)

where N v
i = Nw

i = N1
i .

The internal degrees of freedom have no physical signi�cance, but are simply

coe�cients of the higher-order shape functions. The internal degrees of freedom

serve to increase the accuracy of the transformation from the discrete problem

having a �nite number of degrees of freedom to the continuous problem having an

in�nite number of degrees of freedom. In the present formulation, the number of

internal degrees of freedom is limited to four for the C0-type displacements, and

to two for the C1-type displacements. There are, therefore, a total of six internal

shape functions associated with each continuous displacement u, v, w, and �. The

additional C0-type shape functions for u and � are

N0
3 =

p
3 (
x2

l2
� x

l
) (3.158)

N0
4 =

p
5 (�2x

3

l3
+ 3

x2

l2
� x

l
) (3.159)

103



N0
5 =

p
7 (5

x4

l4
� 10

x3

l3
+ 6

x2

l2
� x

l
) (3.160)

N0
6 = �42x

5

l5
+ 105

x4

l4
� 90

x3

l3
+ 30

x2

l2
� 3

x

l
(3.161)

These shape functions are derived by Hinnant [82] based on satisfaction of two

requirements: �rst, the higher order shape functions must be zero at the element

boundaries, and second, they must be orthogonal with respect to their �rst deriva-

tive. The additional C1-type shape functions for v and w are given by

N1
5 =

p
5 (
x4

2l4
� x3

l3
+
x2

2l2
) (3.162)

N1
6 =

p
7 (�x

5

l5
+ 5

x4

2l4
� 2

x3

l3
+
x2

2l2
) (3.163)

The derivation of these higher-order polynomials is similar to that of the C0-

type polynomials, only the functions must also have zero slope at the element

boundaries, and must be orthogonal in their second derivative.

The arrangement of shape functions in the matrix of shape functionsH depends

on the arrangement of discrete degrees of freedom in q. To facilitate the element

assembly process, the discrete unknowns were grouped with the �rst twelve external

nodes together, followed by the twelve internal nodes (4u, 2v, 2w, and 4�). The

arrangement of the vector of discrete degrees of freedom is given as

qT = f u1 v1 w1 �1 �w0

1 v
0

1 u2 v2 w2 �2 �w0

2 v
0

2

u3 u4 u5 u6 v3 v4 w3 w4 �3 �4 �5 �6 g (3.164)

Before the symbolic integrations of Eqns. 3.148-3.150 can be carried out, the

mass, damping, and sti�ness cross-section matrices (m, c, k, and k) must be de�ned

as polynomials in x. The cross-section terms are functions of x because of the pres-

ence of the twist angle in many of the terms, which is itself a function of x. In the

present formulation, it is desired to have the capability of accounting for changes

in cross-section properties beyond that due to twist, such as taper, for example.
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A beam element does not allow for such e�ects directly, so a quadratic polyno-

mial curve �t was adapted to increase the accuracy of the element for changes in

cross-section properties along its length.

The mass, damping, and sti�ness matrices as given by Eqns. 3.148-3.150 were

symbolically integrated to obtain 24 x 24 element matrices. These matrices were

implemented in an analysis to determine the modes and frequencies of highly-

twisted elastically-coupled rotor blades. As part of this implementation, the dis-

placement approximations could be chosen for each continuous displacement inde-

pendently. The external displacements represent the minimum number of degrees

of freedom for each element, while the maximum is given by use of all twelve

internal degrees of freedom. Any choice between 12 and 24 degrees of freedom

per element could be accomodated in the analysis. The notation adopted for the

present formulation is to select a \p" value which represents the number of inter-

nal degrees of freedom associated with a particular displacement. For example, an

element with pu = 1 and p� = 1 uses the basic cubic hermitian polynomial ap-

proximation in bending (no internal degrees of freedom) and quadratic polynomial

approximations in the axial and torsion displacements. This particular example

happens to represent the most common approximation used in �nite element rotor

blade dynamic analysis because it gives an equivalent level of approximation in all

displacement modes.

3.3 Analysis Application

The capabilities and limitations of the present analysis with respect to mode and

frequency predictions of highly-twisted elastically-coupled beams are examined.

The present analysis, referred to as CORBA (COmposite Rotating Beam Analysis)

for clarity, is �rst veri�ed for simple cases where the elastic coupling in
uences

are small. The predictions of CORBA are then examined for cases where the

105



elastic coupling e�ects become signi�cant. Convergence of the CORBA results

was achieved using �ve beam elements with cubic polynomials for the bending

displacements, and quadratic polynomials for the axial and torsion displacements.

These approximations gave convergence in the most highly twisted rotating beams

considered in this study, and were more than adequate for the untwisted cases.

3.3.1 Analysis Veri�cation

Several cases were studied to verify CORBA predictions of modes and frequencies

for rotating composite blades. Three of the case studies are presented in this pa-

per. These three con�gurations, referred to as Series 1, were developed by Smith

and Chopra [68] to investigate the e�ects of elastically coupled rotor blades for

a soft-inplane hingeless rotor helicopter. The blade cross-section was designed to

be representative of an actual rotor system with respect to sti�ness and inertial

properties. The main structural member of the rotor blade was a single cell com-

posite box beam. The ply orientation of the box beam laminates was adjusted

to produce the three con�gurations considered here. The �rst case is uncoupled

(baseline), the second is extension-
ap shear, 
ap bending-twist coupled (symmet-

ric case), and the third is bending-shear, extension-twist coupled (anti-symmetric

case). The terms \symmetric" and \anti-symmetric" refer to the orientation of

laminates with respect to the bending axes of the box beam, but not to the lami-

nates themselves. The individual laminates themselves are arranged in a symmetric

con�guration for all cases. The sti�ness properties associated with each case, as

reported by Smith and Chopra [68], are shown in Table 3.1. In this table, EA is

the axial sti�ness, GAy and GAz are the lag and 
ap shear sti�nesses, GJ is the

torsional sti�ness, and EIy and EIz are the 
ap and lag bending sti�nesses. k12

represents the extension-
ap shear coupling, k13 the extension-lag shear coupling,

k14 the extension-twist coupling, k25 the lag shear-
ap bending coupling, k36 the
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ap shear-lag bending coupling, k45 the 
ap bending-twist coupling, and �nally

k46 the lag bending-twist coupling. All the sti�nesses are shown to be nondimen-

sionalized by appropriate factors of m0 the mass per unit length, 
 the reference

rotational velocity, and R the blade radius.

The rotating natural frequencies for each case as predicted by two analyses,

UMARC and CORBA, are shown in Tables 3.2-3.4. All references to \UMARC"

are understood to mean the version which has a 19 degree-of-freedom shear de-

formable beam element, unless otherwise indicated. The di�erence in predictions

between CORBA and UMARC is shown to be less than one percent for all modes

except the second 
ap mode of the anti-symmetric case where the di�erence is

1.35 percent. Comparison studies, not shown here, also showed good agreement

between the two analyses for highly twisted blades, up to 90�. These correlations

indicate that the present analysis has accurately captured the e�ects of rotation,

twist, elastic coupling, and shear deformation.

Two more case studies, designated Series 2, were examined to determine the

in
uence of higher amounts of elastic coupling on the frequency predictions of

UMARC and CORBA. The cross-section geometry of these cases was a simple

single cell box beam, without any nonstructural mass or secondary structure, and

in one case the layup was arranged in an anti-symmetric con�guration while the

other was arranged in a symmetric con�guration. The symmetric case had a [15]6

layup of graphite epoxy material on the top and bottom walls while the sides had

a layup of [15=-15]3. The anti-symmetric layup was [15]6 on top and [-15]6 on the

bottom wall, and one side was [15]6 while the other side was [-15]6. The box had an

outside width of .953 inches and outside depth of .537 inches, and the specimens

were 33.25 inches long. These cases were examined because a set of experimental

results, presented by Chandra and Chopra [77], was available for correlation with

the analytical predictions.
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The cross-section mass and sti�ness properties of these specimens were calcu-

lated using a two-dimensional analysis described in detail by Smith and Chopra [83].

This analysis accounts for shear deformation and the out-of-plane warping associ-

ated with torsion, but does not consider any other warping e�ects. The mass and

sti�ness properties developed by this analysis were used as input to both UMARC

and CORBA.

The analytical and experimental results are listed in Table 3.5 for the anti-

symmetric case and in Table 3.6 for the symmetric case. The importance of in-

cluding the shear coupling e�ects for the anti-symmetric case is demonstrated by

the overly sti� predictions shown for UMARC� (UMARC version without shear

deformation). The frequency predictions of CORBA are shown to agree very well

with those of UMARC in both cases. There is a small discrepancy in the pre-

dictions of the second lag modes, but this amounts to less than 4 percent. Of

greater importance is the discrepancy of both beam analyses with respect to the

experimental results. The correlation of CORBA with the experimental results is

shown to be poor, particularly in the lag mode, for both the symmetric and anti-

symmetric cases. The error is mostly likely caused by neglecting some important

warping terms in the cross-section analysis.

3.3.2 Warping In
uences on the Anti-Symmetric Beam

The cross-section analysis employed in the veri�cation studies of the last section

considered only the out-of-plane torsion-related warping. Account of this warping

e�ect gave a much more 
exible and accurate torsional sti�ness value. Analogously,

the shear sti�ness of the beam is also decreased by warping of the cross-section.

In this case, the majority of the e�ect is due to deformation of the cross-section

associated with shear forces both inplane (anticlastic deformation) and out-of-

plane. A simpli�ed approach for including shear-related warping e�ects in a beam
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is to reduce the e�ective shear sti�ness by a factor K which represents the ratio of

average shear stress over the cross-section to the shear stress at the centroid. This

factor accounts for the near-parabolic distribution of shear stress through the cross

section in the direction of the applied shear force, and is generally referred to as

Timoshenko's shear correction factor. Since the amount of warping due to a shear

load depends on the shape and material of the cross-section, so does the value of

K. The value of K was determined, using the formulas derived by Cowper [84], as

approximately 0.85 for the anti-symmetric box beam.

The in
uence of the shear sti�ness e�ect on bending behavior was examined

for the Series 2 anti-symmetric box beam, but with variations of the laminate ply

angles. The basic ply structure of the anti-symmetric box beam is [�]6 on top and

one side, and [-�]6 on bottom and the other side, where � = 15� for the baseline

anti-symmetric con�guration. The ply angle was varied from � = 0� to � = 45�

for this study. The beam was considered non-rotating so as to isolate the elastic

e�ects from the rotational e�ects.

For this study, the results of CORBA were compared with those of an anisotropic

3-D p-version �nite element analysis developed by Hinnant [78]. The 3-D analy-

sis used four brick elements to model the box beam. Convergence was achieved

with ninth order polynomials for displacements along the length of the beam, cu-

bic polynomials along the sides of the cross-section walls, and linear polynomials

through the thickness of each laminate. The material properties of each brick �-

nite element were determined by averaging the material properties for each ply in

the laminate over the laminate thickness. For cases in which the box beam was

twisted, each brick element was twisted in a continuous manner such that the �nite

element model did not di�er from the physical model by more than one hundredth

of an inch at any point.

Results of the ply angle sweep for the anti-symmetric box beam, both with and
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without the shear correction factor applied, are illustrated in Figure 3.4, shown

as a function of error in the CORBA analysis with respect to the 3-D analysis.

The error in the �rst bending modes is shown to increase rapidly with ply angle,

maximizing at about � = 25�, and then decrease with ply angle. This is consistent

with what might be expected based on the Poisson e�ects because the Poisson's

ratio of the box beam laminates follows a similar trend with ply angle. The cross-

section warping is dependent on the Poisson's ratio, so errors associated with

not including all the e�ects of warping are expected. The worst error is quite

signi�cant, about 16 percent in the �rst lag mode and about 6 percent in the �rst


ap mode. The error in the second and third bending modes is shown to be higher,

with error maximizing at about � = 20�. The shear correction factor is shown to

greatly reduce these errors, giving a very accurate prediction in the 
ap modes.

In a second approach taken to account for all warping in
uences, the lag bend-

ing sti�ness was determined through iteration (using the CORBA analysis) as that

required to drive the �rst lag bending frequency to zero error. The error of the

second and third lag bending modes associated with the new lag sti�ness are il-

lustrated in Figure 3.5. As shown, the error in the higher lag bending modes is

reduced, with less than �ve percent error at � = 30� where previously the error was

in the 10 to 25 percent range. This is an important result because it shows that

even in cases where the warping e�ects are signi�cant, the frequencies of higher

modes may be accurately predicted if the same is true of the fundamental modes.

The result is not obvious because the importance of direct shear e�ects increases

at higher modes (beam is e�ectively shorter). The rotating box beam with [15]6

layup was then considered with the appropriate sti�ness terms as developed in the

nonrotating study. The results are shown in Table 3.7 to be greatly improved over

those of Table 3.5, indicating that e�ects associated with rotation have a negligible

in
uence on the accuracy of the frequency predictions.
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3.3.3 Warping In
uences on the Symmetric Beam

The symmetric box beam case was also examined as a function of ply angle in

the nonrotating con�guration. For the symmetric box beam case, the shear is

uncoupled from bending and should have little e�ect on the bending frequencies.

The plots of Figure 3.6 show that there is a dependency of the error (calculated

with respect to the 3-D analysis results) on the ply orientation, just as there was

for the anti-symmetric case. The error in the prediction of the fundamental torsion

mode (which is coupled to the 
ap bending mode) is shown to increase with ply

angle to a maximum at � = 45�, while the error in the lag mode (which is decoupled

from torsion and 
ap) maximizes at about 25�. The error in the higher lag and


ap modes does not follow the same path as the error in the fundamental lag mode

with respect to the ply angle variations. The higher modes are shown to improve

while the fundamental lag mode worsens for the ply angles above 30�.

A new torsional sti�ness was determined which gave a zero error in the funda-

mental torsion mode. The procedure used was the same iterative procedure used

previously to obtain the improved lag sti�nesses for the anti-symmetric case. It

was found that the improvement to the torsional sti�ness drove not only the fun-

damental torsion mode error to zero, but also drove the 
ap bending mode error

to near zero because of the coupling between the two modes. The reverse was

found not to be true, driving the 
ap bending mode to zero error did not cor-

rect the torsion mode error. Since both the fundamental torsion and 
ap bending

modes could be corrected by adjusting a single sti�ness value, the errors associated

with the 
ap bending and torsion modes were likely from the same source, which

was probably an alteration of the torsion-related warping function at the high ply

angles.

An improved lag sti�ness was also calculated using the iterative procedure.

The error of the lag bending mode is attributed to out-of-plane warping associated
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with bending since this mode is decoupled from all other modes.

Application of the re�ned torsion and lag bending sti�nesses improved predic-

tions of the higher bending modes as shown in Figure 3.7. It is interesting that the

error in the higher modes, after the corrections were applied, are lower at high ply

angles where the beam is highly coupled and are worse at zero degrees ply angle

where the beam is uncoupled.

3.3.4 In
uence of Large Pretwist on Nonclassical E�ects

Another important in
uence on composite blades is that of the built-in pretwist.

The in
uence of pretwist could create problems for the approach of the present

formulation because it is di�cult to account for a global e�ect like pretwist in

the local cross-section analysis. The study of Shield [85] illustrated the signi�cant

in
uence of pretwist on cross-section deformations of bars, and the study of Kos-

matka [86] showed that pretwist has a signi�cant in
uence on the cross-section

deformations and extension-torsion behavior of solid and thin-wall airfoil sections.

The static behavior of pretwisted elastically-coupled composite beams was stud-

ied by Iesan [53], Kosmatka and Dong [56], and Kosmatka [57]. These studies

indicate that the elastic-coupling and nonclassical in
uences of shear-deformation

and warping can be in
uenced by the pretwist of the beam. There are no known

reports to date, however, indicating the magnitude of the e�ect that the pretwist

may have on the dynamic behavior of elastically-coupled beams typical of rotor

blades.

The in
uence of the pretwist on the nonclassical e�ects of shear deformation

and warping were examined for the nonrotating symmetric and anti-symmetric

box beam cases of Series 2 with � = 15�. The error of the CORBA predictions as

compared with the 3-D results are shown in Figure 3.8 for pretwist angles up to

90� in the anti-symmetric case. The change in error is small for the fundamental
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modes, with error change less than �ve percent from the untwisted case, even in

the extreme case of 90� of pretwist. The error in the higher lag modes is shown

to be only slightly larger, with a change in the error from 9 to about 16 percent

in the third lag mode. The change in error of both the fundamental and higher

modes, as a function of pretwist, was negligible for the symmetric case.

3.3.5 Convergence Study

A convergence study was performed to determine if use of higher order elements is

bene�cial when beams are elastically coupled. A standard h-element is de�ned for

purposes of the present discussion as one with cubic bending shape functions and

quadratic axial and torsion displacement approximations. The equivalent p-version

element of the present formulation has pu = 1 and p� = 1. Since this element is

routinely used in rotor analyses, the convergence study will consider it a baseline

for comparison. Elements with higher order than the standard are referenced by

their addition to the displacement approximations. For example, \Std.+1w+1t"

refers to a beam element with one order higher approximation in 
ap bending and

torsion than the standard element.

A convergence study of a bending-twist-coupled untwisted composite box beam

showed slow convergence of the third predominantly 
ap mode. The cause of

this was probably due to the coupling between the bending and torsion modes.

Various shape function approximation schemes were employed to determine an

optimum for convergence of this particular mode. The results are illustrated in

the plot of Figure 3.9 which shows that the \Std.+1w+1t" approximation scheme

had the best convergence. Use of that approximation scheme decreased the total

number of degrees of freedom from 32 to 22, assuming a 1 percent error criteria.

This amounts to about a one-third reduction in global degrees of freedom which

could relate to signi�cant improvements in run times associated with analyses of
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elastically-coupled blades.

The composite box beam considered in the above study was uniform and un-

twisted. A second study was conducted on the same beam with 40� of pretwist.

In this case, the cross-section properties change as a function of x, and, as a re-

sult, the integrations were not exact. Again, various shape function approximation

schemes were employed to determine an optimum for convergence of the third 
ap-

wise bending mode. The results are illustrated in the plot of Figure 3.10 which

shows that there is no optimum. The convergence rates are also much shallower

than those shown for the untwisted case in Figure 3.9. This is because in addition

to the elastic coupling between 
ap and torsion modes, the pretwist introduces

coupling between the bending modes. The only higher-order element which per-

formed well had additonal order increases in both bending modes as well as torsion.

However, for this twisted case, the higher order elements did nothing to improve

e�ciency, and in some cases even degraded it.

3.4 Summary

A dynamic analysis has been formulated for rotating pretwisted composite blades

which exhibit anisotropic behavior. The present formulation incorporated the ef-

fects of shear deformation implicitly through elimination of the shear variables in

the material compliance matrix. Results showed that this approach was able to

capture the most signi�cant e�ect of shear deformation, namely the reduction in

e�ective bending sti�ness that occurs when a substantial amount of bending-shear

coupling is present in a beam. The di�erence between implicit and explicit use of

shear degrees of freedom was shown to be less than 2 percent up to the second

bending modes of some representative rotor blades, and less than 4 percent up to

the second bending modes of some highly coupled box beam specimens.

The results of this study also showed that one-dimensional global dynamic anal-
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ysis based on classical beam kinematics can accurately predict the bending and

torsion frequencies of modes important to an aeroelastic analysis. However, the

section properties used in the global analysis must account for the important non-

classical e�ects associated with shear deformation, warping, and elastic couplings.

These nonclassical e�ects were shown to have signi�cant in
uence on the frequen-

cies of the fundamental modes of highly coupled beam structures. Errors on the

order of �fteen percent were reduced to less than �ve percent through account of

the nonclassical e�ects. The in
uence of twist on the predictive capabilities of the

analysis was shown to be small.

The present analysis (CORBA) was implemented using a p-version beam �nite

element. Both the advantages and disadvantages of this approach were discussed.

The p-version element proved to be convenient for assuring a converged solution,

and allowed the desired 
exibility in tailoring the displacement approximations

to the dynamic characteristics of a given beam con�guration. Some degree of

e�ciency improvement was demonstrated for the uniform untwisted case, but ef-

�ciency does not appear to be an issue for more realistic rotor blade structures.

Much of the e�ciency of using higher order elements was shown to be lost for a

highly twisted blade.
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Table 3.1: Composite blade sti�nesses for Series 1.

Sti�ness Baseline Sym. Anti-Sym.

EA=m0

2R2 378.1 378.1 378.1

GAy=m0

2R2 50.77 50.43 50.77

GAz=m0

2R2 25.85 25.85 25.85

GJ=m0

2R4 .003822 .003815 .003796

EIy=m0

2R4 .008345 .008345 .008345

EIz=m0

2R4 .023198 .023198 .023198

k12=m0

2R2 0 -33.67 0

k13=m0

2R2 0 0 0

k14=m0

2R3 0 0 .3589

k25=m0

2R3 0 0 -.1794

k36=m0

2R3 0 0 .1796

k45=m0

2R4 0 -.001311 0

k46=m0

2R4 0 0 0
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Table 3.2: Frequencies for the Series 1 baseline.

CORBA UMARC Di�. Pred.

(per rev) (per rev) (%) Mode

0.749 0.747 0.23 1st lag

1.147 1.146 0.09 1st 
ap

3.398 3.389 0.26 2nd 
ap

4.338 4.315 0.53 2nd lag

4.590 4.590 0.01 1st tor.

7.459 7.416 0.58 3rd 
ap

13.61 13.60 0.08 2nd tor.

Table 3.3: Frequencies for the Series 1 symmetric case.

CORBA UMARC Di�. Pred.

(per rev) (per rev) % Mode

0.749 0.747 0.23 1st lag

1.143 1.142 0.11 1st 
ap

3.354 3.346 0.25 2nd 
ap

4.338 4.314 0.55 2nd lag

4.590 4.590 0.01 1st tor.

13.63 13.62 0.08 2nd tor.
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Table 3.4: Frequencies for the Series 1 anti-symmetric case.

CORBA UMARC Di�. Pred.

(per rev) (per rev) % Mode

0.736 0.735 0.08 1st lag

1.142 1.141 0.07 1st 
ap

3.344 3.389 1.35 2nd 
ap

4.256 4.244 0.29 2nd lag

4.367 4.367 0.01 1st tor.

Table 3.5: Rotating frequencies of the Series 2 anti-symmetric case at 
 =

1002 RPM.

CORBA UMARC UMARC� Experiment CORBAy UMARC�y Pred.

(Hz) (Hz) (Hz) (Hz) Di�. (%) Di�. (%) Mode

36.53 36.49 43.52 33.6 8.70 29.5 1st 
ap

53.89 53.73 62.57 46.6 15.65 34.3 1st lag

202.8 202.2 247.8 184.0 10.2 34.7 2nd 
ap

336.4 328.2 383.6 2nd lag

493.6 493.7 493.7 1st tor.

y Correlation with experimental results. � UMARC without shear deformation.
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Table 3.6: Rotating frequencies of the Series 2 symmetric case at 
 = 1002 RPM.

CORBA UMARC Exp. CORBAy Pred.

(Hz) (Hz) (Hz) Di�. (%) Mode

36.92 36.87 35.20 4.88 1st 
ap

62.79 62.45 53.80 16.7 1st lag

205.0 203.0 188.0 9.04 2nd 
ap

392.2 378.9 2nd lag

729.9 729.2 1st tor.

y Correlation with experimental results.

Table 3.7: Rotating frequencies of an anti-symmetric layup box beam at 
 =

1002 RPM with re�ned sti�ness properties.

CORBA Experiment CORBA Pred.

(Hz) (Hz) Error (%) Mode

34.78 33.60 3.50 1st 
ap

47.04 46.60 0.93 1st lag

190.4 184.0 3.46 2nd 
ap

293.4 2nd lag

493.6 1st tor.

119



ψ
ψ

Ω
0

J
i

K
i ,

I
r

K
r

J
r

I
i

Figure 3.1: Geometry of the shaft and hub.
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Figure 3.2: Geometry of the elastic blade.
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Figure 3.3: Beam element showing external discrete degrees of freedom.
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Figure 3.4: Error in frequency predictions as a function of ply angle for the anti-

symmetric box beam.
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Figure 3.6: Error in frequency predictions as a function of ply angle for the sym-

metric box beam.
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Figure 3.8: Error in frequency predictions as a function of the anti-symmetric

beam pretwist.
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Chapter 4

Structural Modeling of a

Tiltrotor with Anisotropic Blades

The tiltrotor con�guration requires several substantial modi�cations to the heli-

copter structural modeling which exists in UMARC. The modi�cations are neces-

sary because of the large angle of attack of the pylon and requirements for addi-

tional hub-related degrees of freedom which do not currently exist in UMARC. It

also has been determined that important terms for tiltrotor dyanmics, which are

associated with rotor precone, do not appear in the current UMARC formulations.

These terms will be included in the present derivations. The required changes are

extensive enough that it is necessary to derive the new structural equations from

basic principles. The derivation of the tiltrotor structural model, however, does

follow the general guidelines of the derivation of the helicopter structural model

used in UMARC. The signi�cant similarities and di�erences between the helicopter

and tiltrotor derivations are discussed throughout this chapter.

In the �rst part of this chapter, the tiltrotor modeling assumptions and frames

of reference are introduced. Important considerations for a gimballed rotor system

are included in this section. An energy formulation based on Hamilton's principle

(used in UMARC formulations) is applied to the present model, resulting in sys-
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tems of equations associated with the strain and kinetic energies. The formulation

for elastic strain energy shows the di�erences related to precone between the past

and present formulations. A new de�nition for blade foreshortening is de�ned as

a result, and this de�nition is extended into the derivation of kinetic energy. The

�nal linear mass, damping, and sti�ness terms of the system are then de�ned.

4.1 The Tiltrotor Model

The fuselage motion is not considered in the present formulation. There are a

number of tiltrotor wind tunnel tests based on cantilevered wing models to validate

the theory before additional complexities associated with fuselage motion are added

to the system. The tiltrotor is modeled as an elastic wing cantilevered to a �xed

support. At the wing tip, a single rotor system is mounted to a rigid pylon which

can rotate between airplane and hover modes as illustrated in Fig. 4.1. The rotor

system consists of an arbitrary number of elastic blades, Nb. The wing and each

blade are assumed to be elastic beams undergoing 
ap bending, lag bending, elastic

twist, and axial de
ections. The rotor pylon, though itself considered rigid, may

pivot about the wing elastic axis, and may be set at any arbitrary angle with

respect to the wing. In this dissertation, the pylon angle is 0� when the pylon

points straight up (helicopter mode) and is 90� when the pylon points straight

forward (airplane mode). The more common tiltrotor terminology in use today is

just the opposite, 90� when the pylon points straight up (helicopter mode) and 0�

when the pylon points straight forward (airplane mode). The di�erent de�nition

is used for the present derivation to be consistent with the equations of motion

already established in the general purpose rotorcraft code known as UMARC. The

pylon angle is closely related to the shaft angle of that code which is de�ned with

0� pointing straight up.

The types of rotor systems which can be accommodated in UMARC are the
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bearingless, hingeless, and articulated rotor systems. Tiltrotors often use a gimbal

rotor system which is considered in the present formulation.

4.2 Frames of Reference

The coordinate systems and transformations associated with the frames of refer-

ence used in the formulation of the tiltrotor structural model are de�ned in this

section. For the present formulation, an inertial frame of reference is placed on the

tiltrotor wing-tip on the wing before deformation as illustrated in Fig. 4.2. Note

that the origin of this frame is at the pylon pivot point (point about which the

pylon angle is de�ned) which is assumed to be close to or on the wing elastic axis

at the wing tip.

The wing itself is 
exible so a deformed-wing frame of reference is required to

describe motion at the wing-tip. This motion is similar to the hub motion of a

conventional helicopter if the pylon height is set to zero. Because of this similarity,

the degrees of freedom associated with the transformation from the undeformed

to the deformed wing reference frames are termed hub degrees of freedom. Five of

the six hub degrees of freedom represented in the present formulation are analgous

to the �ve original UMARC fuselage degrees of freedom. The original UMARC

fuselage degrees of freedom for a helicopter con�guration are given by xf (transla-

tion positive aft), yf (translation positive starboard), zf (translation positive up),

�s (shaft pitch angle positive nose-down), and �s (roll angle positive starboard)

while the new hub degrees of freedom are given by xh (translation positive aft),

yh (translation positive starboard), zh (translation positive up), �h (pitch angle

positive wing leading edge down), �h (roll angle positive for top of pylon moving

starboard), and �h (yaw angle positive for wing leading edge port). Note that

these de�nitions are based on the starboard tiltrotor wing and rotor system. The

inertial and deformed wing reference frames are illustrated in Figure 4.2.
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The hub reference frame is o�set from the deformed wing frame by the pylon

height and is oriented in the same direction when the pylon angle is set to zero. The

pylon angle �p is assumed to be a large steady angle, and its e�ect on orientation

of the hub frame is illustrated in Figure 4.3. While the hub frame remains �xed,

a rotating blade frame rotates with the blade about the hub frame as illustrated

in Fig. 4.4, and in the absense of precone or gimbal angle the vector Ir runs along

the undeformed blade span.

A unique feature of tiltrotors is the common use of a gimbal rotor system. A

gimbal rotor system acts like a ball joint at the center of rotation; the lead-lag

behavior is similar to a hingeless rotor system and the 
ap behavior is similar to

an articulated rotor system hinged at the center of rotation. It is convenient to

visualize a gimbal reference frame as a �xed frame de�ned with the same origin

as the hub frame, but oriented at angles �GC and �GS with respect to the hub

frame as illustrated in Fig. 4.5. However, the gimbal 
apping motion does not

alter the swash-plate angle so the pitch angle of the rotating blade outboard of the

pitch bearing remains unchanged by the gimbal 
apping (ignoring any pitch-
ap

coupling for the time being). The �xed frame gimbal does not then provide a

\proper" transformation for the physics of the system. The proper transformation

is then to consider the gimbal 
apping in the rotating system as a single degree

of freedom �G which always transforms into two �xed-system degrees of freedom

regardless of the number of blades. The transformation is given by

�G = �GC cos + �GS sin (4:1)

and because the gimbal angle is a function of time

_�G = _�GC cos + _�GS sin + �GS
cos � �GC
 sin (4:2)

The �xed system degrees of freedom associated with the gimbal are considered part

of the hub set of degrees of freedom as a matter of convenience which gives a total
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of eight hub terms. The gimbal may be locked out when articulated, hingeless, or

bearingless rotor systems (which do not feature this motion) are modeled.

Following the above explanation, the next transformation in the sequence after

the rotating-blade system is the undeformed blade system. From the rotating

blade system a transformation is de�ned to the undeformed blade system through

an angle previously de�ned in Chapter 3 as the precone angle. To account for the

possibility of a gimbal rotor system, this transformation now includes the gimbal

angle as de�ned in the rotating system. What was �p now becomes �p + �G as

shown in Fig. 4.6.

The remaining two required reference frames, the cross-section reference frame

and the deformed reference frame, were de�ned as part of the formulation of strain

and kinetic energy in Chapter 3. The inertial reference frame of that formulation is

essentially replaced by the sequence of reference systems from the present inertial

system to the hub reference frame, and then the precone transformation is modi�ed

to include the gimbal angle.

The sequence of seven coordinate systems from the inertial to the deformed

system is as follows (a notation of identi�cation for each system is given in paren-

thesis): inertial (i), deformed-wing (w), hub (h), rotating (r), undeformed-blade

(u), cross-section (c), and deformed-blade (d). The unit vector triads of each co-

ordinate system are related to the triads of the previous coordinate system in the

sequence through the following transformations:

8>>>>><
>>>>>:

Îd

Ĵd

K̂d

9>>>>>=
>>>>>;

= [Tdc]

8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;

(4.3)

8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;

= [Tcu]

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

(4.4)
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8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

= [Tur]

8>>>>><
>>>>>:

Îr

Ĵr

K̂r

9>>>>>=
>>>>>;

(4.5)

8>>>>><
>>>>>:

Îr

Ĵr

K̂r

9>>>>>=
>>>>>;

= [Trh]

8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;

(4.6)

8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;

= [Thw]

8>>>>><
>>>>>:

Îw

Ĵw

K̂w

9>>>>>=
>>>>>;

(4.7)

8>>>>><
>>>>>:

Îw

Ĵw

K̂w

9>>>>>=
>>>>>;

= [Twi]

8>>>>><
>>>>>:

Îi

Ĵi

K̂i

9>>>>>=
>>>>>;

(4.8)

The six transformation matrices required for the full sequence are de�ned as fol-

lows:

[Tdc] =

2
6666666666666666666664

1 v0c � wc�
0

0 w0

c + vc�
0

0

�(v0c � wc�
0

0) cos�

�(w0

c + vc�
0

0) sin�

�0 sin�

+cos�

sin�

�(w0

c + vc�
0

0) cos�

+(v0c � wc�
0

0) sin�

�0 cos�

� sin�

cos�

3
7777777777777777777775

(4.9)

[Tcu] =

2
666664
1 0 0

0 cos �0 sin �0

0 � sin �0 cos �0

3
777775 (4.10)
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[Tur] =

2
666664
cos �pg 0 �sin�pg

0 1 0

sin �pg 0 cos �pg

3
777775 (4.11)

[Trh] =

2
666664

cos sin 0

� sin cos 0

0 0 1

3
777775 (4.12)

[Thw] =

2
666664
cos�p 0 �sin�p
0 1 0

sin�p 0 cos�p

3
777775 (4.13)

[Twi] =

2
666664

cos h sin h 0

� sin h cos h 0

0 0 1

3
777775

2
666664
cos�h 0 �sin�h
0 1 0

sin�p 0 cos�h

3
777775

2
666664
1 0 0

0 cos�h � sin�h

0 sin�h cos�h

3
777775 (4.14)

The transformation Tdc was derived previously in Chapter 3. The transformation

Tcu accounts for pitch angle of the cross-section with respect to the plane of rota-

tion. The pitch angle �0 is a combination of blade collective, cyclic, and pretwist,

and is not assumed to be a small angle. Tur accounts for the blade precone and

gimbal angles, both of which are assumed to be of order � and positive in the 
ap-

up direction. As will be seen later in the derivation, �G is a function of time while

�p is not. Trh accounts for the blade rotation angle  = 
t de�ned as a positive

rotation about the K̂r vector and is not a small angle. The transformation Thw

accounts for the steady pylon angle setting (at 0� the rotor points up for helicopter

mode, at 90� the rotor points forward for airplane mode) which is not assumed to

be a small angle. The �nal transformation accounts for deformation rotations of
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the wing at the wing-tip, �h, �h, and �h. These three angles are of order �.

Because all the coordinate systems are orthogonal, the above transformation

matrices may be inverted by taking the transpose, producing the following rela-

tionships for the inverse transforms

[Tcd] = [Tdc]
�1

= [Tdc]
T

(4.15)

[Tuc] = [Tcu]
�1

= [Tcu]
T

(4.16)

[Tru] = [Tur]
�1

= [Tur]
T

(4.17)

[Thr] = [Trg]
�1

= [Trh]
T

(4.18)

[Twh] = [Thw]
�1

= [Thw]
T

(4.19)

[Tiw] = [Twi]
�1

= [Twi]
T

(4.20)

The transformation from one frame to any other is accomplished by multiplying

through the applicable part of the transformation sequence. For example, the

transformation from the hub to the cross-section reference system is given by8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;
= [Thc]

8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;
= [Thr][Tru][Tuc]

8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;

(4:21)

and the transformation from the cross-section blade reference frame back to the

hub frame is given by8>>>>><
>>>>>:

Îc

Ĵc

K̂c

9>>>>>=
>>>>>;

= [Tch]

8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;
= [Tcu][Tur][Trh]

8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;

= [Tuc]
T [Tru]

T [Thr]
T

8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;

(4.22)

The transformations discussed above are used throughout the remaining sections

to de�ne displacements and velocities in the various reference frames.
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4.3 Nondimensionalization and Ordering Scheme

The present formulation is developed in nondimensional form consistant with that

used in UMARC. The physical quantities are nondimensionalized by reference

parameters associated with the rotor system as follows:

Length R (4.23)

Time 
�1 (4.24)

Mass/Length m0 (4.25)

Velocity 
R (4.26)

Acceleration 
2R (4.27)

Force m0

2R2 (4.28)

Moment m0

2R3 (4.29)

Energy or Work m0

2R3 (4.30)

The reference parameter m0 is de�ned as the distributed mass of a uniform blade

which has the same 
ap inertia as the blade under consideration (which may be

nonuniform). This parameter is given by

m0 =
3I�

R3
=

3
R R
0 mr2dr

R3
(4:31)

The present formulation is explicit and nonlinear. In this type of formulation,

the number of terms can quickly become unmanagable. In general, an ordering

scheme is adopted to reduce the number of nonlinear terms retained in the formu-

lation. It identi�es those terms which have little or no impact on the system under

the geometric assumptions adopted. Terms of order �n+2 are ignored when terms

up to �n exist in the same energy expression, and � is a quantity equivalent to the

maximum bending rotation expected in the beam model. The ordering scheme

used in the tiltrotor formulation is slightly di�erent from that used in previous
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formulations associated with UMARC. As elastic coupling in rotor blades can re-

sult in large elastic twist, the present ordering scheme considers elastic twist to

be of order 1 rather than of order � as it has in past formulations. The order of

important nondimensional quantities associated with the tiltrotor formulation are

listed as follows:

O(1) = �;
x

R
;
h

R
;
m

m0

;
@

@ 
;
@

@x
;

cos ; sin ; cos�1 ; sin�1 ; cos�p ; sin�p ;

�0; �1; � (4.32)

O(�) =
v

R
;
w

R
; �p; �GC ; �GS

_xh

R
;
_yh

R
;
_zh

R
;�h; �h; �h; _�h; _�h; _�h;

�r

R
;
ed

R
;
eA

R
;
eg

R
(4.33)

O(�2) =
ue

R
(4.34)

4.4 Formulation Using Hamilton's Principle

The tiltrotor formulation is based on Hamilton's variational principle generalized

for a nonconservative system which may be expressed as

�� =
Z t2

t1

(�U � �T � �W ) dt = 0 (4:35)

�U is the variation of the elastic strain energy, �T is the variation of kinetic energy,

and �W is the work done by nonconservative forces which are of aerodynamic origin

in the present system. The contributions to these energy expressions from the rotor

blades, hub, and wing may be summed as

�U =

0
@ NbX
m=1

�Ub

1
A+ �Uh + �Uw (4.36)

�T =

0
@ NbX
m=1

�Tb

1
A+ �Th + �Tw (4.37)
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�W =

0
@ NbX
m=1

�Wb

1
A+ �Wh + �Ww (4.38)

where b refers to the blade, h to the hub, and w to the wing. The work is performed

by the aeordynamic loads on the rotor blades which is considered later in Chapter 5.

There is no contribution of the structural model to work, only the elastic strain

(potential) energy and the kinetic energy (and associated mass, damping, and

sti�ness matrices) are derived in the present chapter. The elastic strain energy is

the result of rotor blade and wing deformations. The elastic strain energy of the

rotor blade with the hub �xed was derived in Chapter 3, but some modi�cations for

the hub motion and rotor precone must be considered for these results to be valid.

The wing structural model is the same as the rotor blade with 
 = 0 so there is no

need for a new formulation of elastic or kinetic energy for the wing contribution.

The kinetic energy of the rotor system, which was derived in Chapter 3 for a

�xed hub, is invalid for hub motion, and is thus reformulated with the hub motion

included in the present chapter.

4.4.1 Formulation of Elastic Strain Energy

Blade Elastic Strain Energy

On the surface, it would not seem necessary to reconsider the elastic strain energy

of the rotor blade as de�ned in Chapter 3 for the tiltrotor con�guration. This

is because the orientation of the rotor in space should not in
uence the elastic

deformation which is de�ned relative to the undeformed blade. If the important

in
uence of precone had been included properly in this formulation then this would

indeed be the case. The present de�nition for nonlinear strain includes rigid body

motion as was seen in the previous development of Chapter 3. There, a fore-

shortening strain variable, uF , was de�ned so that the centrifugal sti�ening e�ect

associated with the kinematic contribution to rotor foreshortening was removed
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from the strain energy formulation, and through the same variable substitution,

reappeared in the kinetic energy formulation. Unfortunately, that formulation (like

past UMARC formulations) does not account for the additional rigid body motions

associated with precone. The orientation of the blade with respect to the hub plane

in
uences the centrifugal force on the blade which, in the application of Hamil-

ton's principle, appears �rst in the strain energy. The present section rede�nes the

foreshortening substitution to include the precone in
uence and thereby improves

the formulation by accounting for centrifugal-elastic coupling e�ects arising from

the precone.

The fundamental kinematic variables from Chapter 3 were de�ned in the unde-

formed-blade coordinate system as u, v, and w. The undeformed-blade coordinate

system may be preconed at an angle �p with respect to the rotating blade coor-

dinate system as shown in Figure 4.6. Three new kinematic variables are de�ned

in this system as ur, vr, and wr. The relationship between these new kinematic

variables and the kinematic variables of the undeformed-blade coordinate system

are given by the transformation Tur as

ur = u cos �p � w sin �p (4.39)

vr = v (4.40)

wr = w cos �p + u sin �p (4.41)

Since �p is a small angle and u is an order of magnitude smaller than w, these

relationships may be simpli�ed to

ur = u� w�p (4.42)

vr = v (4.43)

wr = w (4.44)

Now, w may be de�ned as:

w = we + v� (4:45)
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where we is the elastic 
apwise deformation and v� is the rigid body motion in

the 
ap direction due to the combination of lag and twist deformation. The axial

displacement for the precone-modi�ed formulation is then written as

ur = u� �p(we + v�) (4:46)

It is apparent then that the only signi�cant in
uence of the precone is the shorten-

ing of the axial kinematic variable by the term �p(we+v�). Since this term modi�es

the blade extension, it will modify the blade sti�ness via centrifugal forces, similar

to the foreshortening discussed in Chapter 3.

Substitution of the new de�nition for axial displacement (Eqn. 4.46) into the

position vector de�ned by Eqn. 3.17, taking derivatives de�ned by Eqns. 3.23-3.28,

and substitution of these results into the strain de�nitions given by Eqns. 3.40-3.42

yields the precone-modi�ed strains as:

�xx = u0 + �pw
0 + �pv�

0 + �pv
0�+

1

2
v02 +

1

2
w02 +

1

2
(�2 + �2)�02 + (�0 uT )

0 � v00[� cos(�0 + �)� � sin(�0 + �)]

�w00[� sin(�0 + �) + � cos(�0 + �)] (4.47)

�x� = v0s cos(�0 + �) + w0

s sin(�0 + �) + ( uT;� � �)�0 (4.48)

�x� = w0

s cos(�0 + �)� v0s sin(�0 + �) + ( uT;� + �)�0 (4.49)

where the kinematic variables are now de�ned in the rotating-blade coordinate

system although the subscript r has been dropped.

Recall from Chapter 3 that the kinematic foreshortening of the rotor blade is

removed from the potential energy formulation through the following substitution

u0 = u0e �
1

2
v02 � 1

2
w02 (4:50)

and this was necessary to account for the rigid body displacements included in

the de�nition of u. u is now modi�ed to include the rigid body displacement
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associated with the precone. The rigid-body motion contribution is then added to

the de�nition of axial strain so that Eqn. 4.50 becomes

u0 = u0e �
1

2
v02 � 1

2
w02 � �p(v

0�+ v�0) (4:51)

It then follows that

�u0 = �u0e � v0�v0 � w0�w0 � �p(��v
0 + v0��+ v��0 + �0�v) (4.52)

u = ue �
1

2

Z x

0
(v02 + w02)d� � �p

Z x

0
(v0�+ v�0)d� (4.53)

�u = �ue �
Z x

0
(v0�v0 + w0�w0)d� �

�p

Z x

0
(��v0 + v0��+ v��0 + �0�v)d� (4.54)

With these new de�nitions for the axial strain, the strain energy becomes

�xx = u0e + �pw
0 +

1

2
(�2 + �2)�02 + (�0 uT )

0 � v00[� cos(�0 + �)� � sin(�0 + �)]

�w00[� sin(�0 + �) + � sin(�0 + �)] (4.55)

�x� = v0s cos(�0 + �) + w0

s sin(�0 + �) + ( uT;� � �)�0 (4.56)

�x� = w0

s cos(�0 + �)� v0s sin(�0 + �) + ( uT;� + �)�0 (4.57)

where, again, the kinematic variables are now de�ned in the rotating-blade co-

ordinate system although the subscript r has been dropped. The linear sti�ness

matrix terms de�ned by Eqns. 3.58-3.79 in Chapter 3 are now modi�ed to

k11 = EA (4.58)

k13 = �EA�cos�1 (4.59)

k15 = �EA�sin�1 (4.60)

k17 = EET + EAr2�
0

0 (4.61)

k18 = EESccos�1 � EESfsin�1 (4.62)

k19 = EEScsin�1 + EESfcos�1 (4.63)

k22 = EA�p (4.64)
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k33 = EIccos
2�1 + EIfsin

2�1 (4.65)

k35 = EIfcos�1sin�1 � EIfcos�1sin�1 (4.66)

k37 = ETCcos�1 � ETF sin�1 (4.67)

k38 = (EFSc + ECSf )cos�1sin�1 (4.68)

k39 = EFScsin
2�1 � ECSfcos

2�1 (4.69)

k44 = 0 (4.70)

k55 = EIfcos
2�1 + EIcsin

2�1 (4.71)

k57 = ETF cos�1 + ETCsin�1 (4.72)

k58 = ECSfsin
2�1 � EFSccos

2�1 (4.73)

k59 = �(EFSc + ECSf )cos�1sin�1 (4.74)

k66 = 0 (4.75)

k77 = GJ (4.76)

k88 = GAccos
2�1 +GAfsin

2�1 (4.77)

k89 = (GAc �GAf )cos�1sin�1 (4.78)

k99 = GAfcos
2�1 +GAcsin

2�1 (4.79)

with �1 = �0+�. The i; j of the sti�ness matrix correspond the vector of displace-

ment and displacement variation, respectively, where the displacement variation

vector is given by

�̂vi =

�
�u0e �v

0 �v00 �w0 �w00 �� ��0 �v0s �w
0

s

�
(4:80)

These terms agree with those developed in Chapter 3 except for the k22 sti�-

ness. An investigation of this particular term showed a negligible in
uence on


ap sti�ness of typical rotor blades because the centrifugal-related 
ap sti�ness is

dominant. However, care must be exercised in the selection of an axial sti�ness

which is reasonable since an unreasonably large value may create an in
uence when

precone is present in the system (an in�nite axial sti�ness will result in an in�nite
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ap sti�ness). The sti�ness matrix is still applicable to static condensation, as

explained in Chapter 3, only there is an additional diagonal term which expands

the matrix size to a 5 x 5. The reduced sti�ness matrix is now given by

k011 = �EA (4.81)

k012 = � �EA�cos�1 (4.82)

k013 = � �EA�sin�1 (4.83)

k014 = EET + �EAr2�
0

0 (4.84)

k022 = �EIccos
2�1 + �EIfsin

2�1 (4.85)

k023 = �EIfcos�1sin�1 � �EIfcos�1sin�1 (4.86)

k024 = ETCcos�1 � ETF sin�1 (4.87)

k033 = �EIfcos
2�1 + �EIcsin

2�1 (4.88)

k034 = ETF cos�1 + ETCsin�1 (4.89)

k044 = �GJ (4.90)

k055 = EA�p (4.91)

and the corresponding vector of displacement variation is

�̂vi =

�
�u0e �v00 �w00 ��0�v0

�
(4:92)

Hub Elastic Strain Energy

The strain energy contribution of the hub is given entirely by the gimbal system

when hub springs are included. This is a very simple formulation given by

Uh =
1

2
K�GC�

2
GC +

1

2
K�GS�

2
GS (4:93)

and the variation of the strain energy is then

�Uh = K�GC�GC��GC +K�GS�GS��GS (4:94)
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The other hub degrees of freedom do not have any direct elastic strain contribution.

The strain energy associated with these motions come from the wing structure so

elastic sti�ness does not exist until the hub is assembled to the wing model. The

assembly process will be discussed later in this chapter.

4.4.2 Formulation of Kinetic Energy

To reformulate the kinetic energy of the system with hub motion included, the

contributions of hub motion to the total velocity must be considered. In this

section, the velocity components in the three principle inertial frame directions are

derived. There are two contributions to these velocities considered in the present

derivation: the blade motion and the hub motion. As mentioned previously, the

fuselage motion contribution is not considered, and is not required for development

of a cantilevered wing tiltrotor model. The general expression of the velocity vector

for the motion of the blade and hub together can be written relative to any frame

of reference as

~V = ~Vb + ~Vh (4:95)

where ~Vb represents the blade contribution and ~Vh represents the hub contribution

to the total velocity.

The contribution of the blade and hub velocities is determined by taking the

time derivative of the position vector in the inertial frame. This approach elimi-

nates the need to determine the time rate of change of a local rotating reference

frame with respect to an inertial frame since the local frame in this case is the

inertial frame. The position vector of an arbitrary point on the cross section of

the deformed blade is given by:

~R = fxhÎi; yhĴi; zhK̂ig+ hK̂w + f(x+ u)Îu; vĴu; wK̂ug+ f0; �Ĵd; �K̂dg (4:96)
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which may be written entirely in the inertial reference frame as

~R = (fxh; yh; zhg+ f0; 0; hg[Twi] + f(x+ u); v; wg[Tui]

+f0; �; �g[Tdi])

8>>>>><
>>>>>:

Îi

Ĵi

K̂i

9>>>>>=
>>>>>;

(4.97)

The blade and hub degrees of freedom are functions of time as is the azimuth angle

 which may be written as 
t. The precone angle �p is assumed to be constant.

After carrying out the transformations and applying the ordering scheme, the

velocity due to blade and hub motions is then de�ned by

~Vb + ~Vh =
@ ~R

@t
= VxÎi + VyĴi + VzK̂i (4:98)

with Vx, Vy, and Vz provided as follows (note separation between terms provided

to help delineate between O(1), O(�) , and O(�2) contributions to each velocity)

Vx = �cos�p sin x�

cos�p cos cos�1 � � _�hcos�p h� cos�p cos v � cos�p sin _v �

sin�p _w � _�hcos sin�p x� _�GCcos sin�p x� �GScos sin�p x+

�hsin�p sin x+ �GCsin�p sin x� _�GSsin�p sin x+ _xh �

cos x�h � sin x _zh + cos�p cos sin�1 � +

�hcos cos�1 �sin�p + �h _�hhsin�p + _�hcos�1 �sin�p sin �

_�hcos�p �sin�1 + �pcos�p �sin sin�1 + 2�GCcos�p cos �sin sin�1 �
_�GScos�p cos �sin sin�1 � cos�1 �sin�p _�1 + cos�p �sin sin�1 _�1 �

cos�p sin u+ cos�p cos _u+ �hcos sin�p v +

_�hsin�p sin v + �hsin�p sin _v � cos�p cos cos�1 � _v
0 � _�hcos�p w +

147



�pcos�p sin w + 2�GCcos�p cos sin w � _�GScos�p cos sin w �

�hcos�p _w � �pcos�p cos _w � �GScos�p cos sin _w �

cos�p cos �sin�1 _w0 � _�h�pcos�p x� �h _�hcos�p cos x�

�h _�GCcos�p cos x� �h�GScos�p cos x+ �h�GCcos�p sin x�

_�h�GScos�p sin x� �h _�GScos�p sin x+ �GC�pcos�p cos sin x�
_�GS�pcos�p cos sin x+ cos�1 �sin �h + sin v�h � cos _v�h �

cos cos�1 � _zh � cos v _zh + hsin�p �h _zh � _�h�GCcos�p cos x�

cos�p cos x�h _zh + cos�p cos�1 �sin v
0 + cos�p �sin sin�1 w

0 �
_�GCcos�p cos

2 �sin�1 � �GScos�p cos
2 �sin�1 �

_�GCcos�p cos
2 w � �GScos�p cos

2 w + �GScos�p sin
2 w �

_�GC�pcos�p cos
2 x� �GS�pcos�p cos

2 x� �GC _�GCcos�p cos
3 x�

�GC�GScos�p cos
3 x+ �2

GCcos�p cos
2 sin x�

�2
GScos�p cos

2 sin x� �GC _�GScos�p cos
2 sin x�

�GS _�GScos�p cos sin2 x� �GCcos�p cos
2 _w +

�GScos�p � sin
2 sin�1 � _�GC�GScos�p cos

2 sin x+

�GC�GScos�p cos sin2 x� _�hcos�p cos�1 � + �pcos�p cos�1 sin � +

2�GCcos�p cos cos�1 sin � � _�GScos�p cos cos�1 sin � �

�hcos sin�p sin�1 � � _�hsin�p sin sin�1 � +

cos�p cos�1 sin _�1� + sin�p sin�1 _�1� +

cos�p cos sin�1 _v
0� � cos�p cos cos�1 _w0� �

sin sin�1 ��h + cos sin�1 � _�h � cos�p sin sin�1 �v
0 +

cos�p cos�1 sin �w
0 � _�GCcos�p cos

2 cos�1 � �

�GScos�p cos
2 cos�1 � + �GScos�p cos�1 sin2 � (4.99)
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Vy = cos x+

cos�p h _�� cos�1 �sin � sin v + cos _v + cos _�sin�p x�

�sin�p sin x+ _yh � cos�p sin x�h � hsin�p _zh + cos�p cos x _zh +

sin sin�1 � �

cos cos�1 ��sin�p � _�hh�sin�p � �hh _�sin�p �

cos�1 � _�sin�p sin � �pcos �sin�1 + cos�p � _�sin�1 �
_�GCcos �sin sin�1 � 2�GScos �sin sin�1 � cos �sin�1 _�1 +

cos u+ sin _u� cos �sin�p v � _�sin�p sin v �

�sin�p sin _v � cos�1 �sin _v0 � �pcos w +

cos�p _�w � _�GCcos sin w � 2�GScos sin w + cos�p � _w �

�psin _w � �GCcos sin _w � �sin sin�1 _w0 +

_�hcos�p cos �x+ _�GCcos�p cos �x+ �GScos�p cos �x+

�pcos�p _�x+ �hcos�p cos _�x+ �GCcos�p cos _�x�
_�GC�pcos sin x� �GS�pcos sin x� �hcos�p �sin x�

�GCcos�p �sin x+ _�GScos�p �sin x+ �GScos�p _�sin x�

� _�sin x+ �GC�GSsin 
3x� �GS _�GSsin 

3x�

cos�p cos cos�1 ��h � cos�p cos v�h � cos�p sin _v�h �

sin�p _w�h � _�GCcos sin�p x�h � �GScos sin�p x�h +

�GCsin�p sin x�h � _�GSsin�p sin x�h � cos�p cos�1 �sin _zh �

�sin�p sin�1 _zh � cos�p sin v _zh � sin�p w _zh �

�psin�p x _zh � �GCcos sin�p x _zh � �GSsin�p sin x _zh �

sin x�h _zh � cos cos�1 �v
0 � cos �sin�1 w

0 �
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�GC cos
2 �sin�1 + �GC� sin

2 sin�1 � _�GS� sin
2 sin�1 �

�GC cos
2 w + �GC sin

2 w � _�GS sin
2 w �

�GS sin
2 _w � �GC _�GC cos

2 sin x�
_�GS�p sin

2 x� �GC�GS cos
2 sin x+

�GC�p sin
2 x+ �2

GCcos sin2 x� _�GC�GScos sin2 x�

�2
GScos sin2 x� �GC _�GScos sin2 x�

�pcos cos�1 � + cos�p cos�1 _�� � _�GCcos cos�1 sin � �

2�GScos cos�1 sin � + cos �sin�p sin�1 � + _�sin�p sin sin�1 � �

cos cos�1 _�1� + sshsin�1 _v
0� � cthsin _w0� +

cos�p cos sin�1 ��h � cos�1 sin�p � _�h + cos�p sin sin�1 � _�h +

cos sin�1 �v
0 � cshcos�1 �w

0 � �GC cos
2 cos�1 � +

�GCcos�1 sin2 � � _�GScos�1 sin2 � (4.100)

Vz = sin�p sin x

+ _zh + cos cos�1 �sin�p + �GScos�p cos x+ cos sin�p v +

cos�p _w + _�hcos�p cos x� _�hsin x� �GCcos�p sin x� cos �hx�

(�hcos�p cos cos�1 �)� cos cos�1 � _�h �

_�hcos�p cos�1 �sin + cos�1 ��hsin + _�h�sin�p sin�1 �

�p�sin�p sin sin�1 + cos�p cos�1 � _�1 � �sin�p sin sin�1 _�1 +

sin�p sin u� cos sin�p _u� cos _�hv � �hcos�p cos v �

_�hcos�p sin v + �hsin v � cos ps _v � �hcos�p sin _v +

sin�p sin _v � cos�1 �sin�p sin v
0 + cos cos�1 �sin�p _v

0 +
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_�hsin�p w � �psin�p sin w + �hsin�p _w + �pcos sin�p _w +

cos �sin�p sin�1 _w0 + _�h�psin�p x+ �h _�hcos sin�p x+

cos �h _�hsin�p x� �hcos�p sin x+ _�hcos�p xh �
_�hyh � �hcos x�h � cos�p cos _�hx�h �

_�hsin x�h + cos�p �hsin x�h � cos�p cos �hx _�h �

�hsin x _�h + _�hsin�p zh � �GCcos�p cos cos�1 � �

�GScos�p cos�1 �sin � �GCcos�p cos v � �GScos�p sin v

+�GScos�p cos _v � �GCcos�p sin _v � �GCsin�p _w +

� _�h�GCcos sin�p x� �h�GScos sin�p x� _�h�GSsin�p sin x+

�h�GCsin�p sin x� _�hcos�1 sin�p � + �pcos�1 sin�p sin � +

�hcos�p cos sin�1 � + �GCcos�p cos sin�1 � + cos _�hsin�1 � +

cos sin�p sin�1 � + _�hcos�p sin sin�1 � + �GScos�p sin sin�1 � �

�hsin sin�1 � + cos�1 sin�p sin _�1� � cos�p sin�1 _�1� �

sin�p sin sin�1 v
0� + cos sin�p sin�1 _v

0� + cos�1 sin�p sin w
0� �

cos cos�1 sin�p _w0� � �sin�p sin sin�1 w
0 (4.101)

The variation of velocity is calculated from the above equations and placed in form

similar to Eqn. 4.98 as

�~Vb + �~Vh = �VxÎi + �VyĴi + �VzK̂i (4:102)

Variation of Kinetic Energy

The kinetic energy for the blade and hub system is given by

T =
1

2

Z R

0

ZZ
A
�s~V � ~V d� d� dx (4:103)

where V̂ is the velocity as de�ned by Eqn. 4.98 and �s is the mass density of any

arbitrary point in the system. In the present formulation, the mass density of the
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hub is zero because the mass of the pylon and rotor hub is considered part of the

wing. The variation of the kinetic energy is given by

�T =
Z R

0

ZZ
A
�s~V � �~V d� d� dx (4:104)

Integration over the cross section area results in the following de�nitions for the

mass constants of the blade:

m =
ZZ
A
�s d� d� (4.105)

meg =
ZZ
A
�s� d� d� (4.106)

mk2m1 =
ZZ
A
�s�

2 d� d� (4.107)

mk2m2 =
ZZ
A
�s�

2 d� d� (4.108)

mk2m =
ZZ
A
�s(�

2 + �2) d� d� (4.109)

where m represents the blade mass per unit length, eg is the mass center of gravity

o�set from the elastic axis which is positive forward, km1 and km2 are the 
apwise

and chordwise mass radii of gyration, respectively, and km is the torsional mass ra-

dius of gyration so thatmk2m represents the torsional mass moment of inertia about

the elastic axis. Because a symmetrical airfoil is assumed about the chordline, the

following integrations are zero:

ZZ
A
�s� d� d� = 0 (4.110)ZZ

A
�s��d� d� = 0 (4.111)

The nondimensional form of the kinetic energy, after the cross section integra-

tions are carried out on the velocity dot product, is written as

�T

m0
2R3
=

Z R

0
m(TF + Tu�ue + T _u� _ue + Tv�v + T _v� _v + Tw�w + T _w� _w +

T���+ T _��
_�+ Tv0�v

0 + T _v0� _v
0 + Tw0�w

0 + T _w0� _w
0 +

T _xh� _xh + T _yh� _yh + T _zh�zh + T�h��h + T _�h� _�h +

T�h��h + T _�h
� _�h + T�h

��h + T _�h
� _�h +

T�GC��GC + T _�GC
� _�GC + T�GS��GS + T _�GS

� _�GS) dx (4.112)
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where �TF is the contribution associated with the foreshortening e�ect. The kinetic

energy associated with this e�ect was derived in Chapter 3, but before proceeding

with the kinetic energy formulation with hub included, the kinetic energy associ-

ated with TF as modi�ed for the precone is derived.

Kinetic Energy Associated with Foreshortening

The new form for the axial strain with precone included is given by Eqn. 4.51. The

foreshortening contribution can then be written as

u0F =
1

2
v02 +

1

2
w02 + �p(v

0�+ v�0) (4:113)

since u0 = u0e � u0F . Substitution of this de�nition into the expressions for velocity

and velocity variation give the foreshortening contribution as

TF = �(x+ 2 _v)�uF + _uF �v (4:114)

and the terms associated with uF are given by

�uF =
Z x

0
(v0�v0 + w0�w0)d� +

�p

Z x

0
(��v0 + v0��+ v��0 + �0�v)d� (4.115)

_uF =
Z x

0
(v0 _v0 + w0 _w0) d� +

�p

Z x

0
(v0 _�+ _v0�+ _v�0 + v _�0)d� (4.116)

The contribution to the kinetic energy is then given by
R 1
0 mTFdx which, after the

appropriate substitutions and application of the ordering scheme, gives

Z 1

0
mTFdx =

Z 1

0
m[�(x+ 2 _v)

Z x

0
(v0�v0 + w0�w0)d� �

x�p

Z x

0
(��v0 + v0��+ v��0 + �0�v)d� +

2�v
Z x

0
(v0 _v0 + w0 _w0) d�]dx (4.117)

As was the case in Chapter 3, integration by parts yields the convenient form for

the foreshortening contribution. For the present case, the kinetic energy associated
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with foreshortening becomes

Z 1

0
mTFdx = �(FA + Fcor)(v

0�v0 + w0�w0)� �pFA(��v
0 + v0��+ v��0 + �0�v)

+2�v
Z x

0
(v0 _v0 + w0 _w0) d� (4.118)

where

FA =
Z 1

x
mx d� (4.119)

Fcor =
Z 1

x
2m _v d� (4.120)

Comparing results with Chapter 3, the modi�cations to the formulation for precone

are seen to add centrifugal sti�ness contributions only and do not add contributions

to the nonlinear Coriolis damping (within the ordering scheme).

Terms in the Kinetic Energy

Let [Tu]i represent the groups of terms which are the coe�cients of �ûi and [T _u]i

represent the groups of terms which are the coe�cients of � _̂ui where

�û = f�ue �v �w �� �v0 �w0

�xh �yh �zh ��h ��h ��h ��GC ��GSg (4.121)

and

� _̂ui =
d

dt
�ûi (4:122)

Equation 4.112 can then be expressed more compactly as

�T

m0
2R3
=
Z R

0
m([Tu]i�ûi + [T _u]i� _̂ui + TF ) dx (4:123)

Through integration by parts, the following relationship is developed

Z R

0
[T _u]i� _̂ui = �

Z R

0

d

dt
([T _u]i)�ûi (4:124)

which may be used to further simplify Eqn. 4.123 to

�T

m0
2R3
=
Z R

0
m([T�u]i�ûi + TF ) dx (4:125)
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where

[T�u]i = [Tu]i �
d

dt
[T _u]i (4:126)

so that the [T�u]i include the additional acceleration terms gained by the integration

by parts. The values for the [T�u]i are derived as

Tu = ��hcos h� cos�1 eg� _�� cos�p h��hsin �

2eg _�sin�1 � �u+ 2 _v + x+ 2 _�hsin�p x�

cos�p cos �xh � sin �yh � cos sin�p �zh + 2cos�p x _�h +

hsin�p sin ��h (4.127)

Tv = cos�1 eg � cos�p cos h��h + cos�1 eg _�
2 +

cos�1 eg���� ��hhsin � eg�sin�1 +

eg ��sin�1 + cos�1 eg���1 + egsin�1 ��1 � 2 _u+

v � �v + �hsin�p x� �phihsin�p x+ cos�p sin �xh �

cos �yh + sin�p sin �zh + cos�p x�h + cos hsin�p ��h �

cos�p x��h (4.128)

Tw = �cos�1 eg ��+ eg _�
2sin�1 + eg���sin�1 �

cos�1 eg��1 + eg�sin�1 ��1 � �w � �px+ �hcos x�

��hcos x+ �GCcos x� ��GCcos x� 2 _�GScos x+

2cos�p cos _�hx+ 2 _�hsin x+ 2 _�GCsin x+

�GSsin x� ��GSsin x� cos�p �hsin x+ cos�p ��hsin x+

sin�p �xh � cos�p �zh + sin�p sin x�h � 2cos sin�p x _�h �

sin�p sin x��h (4.129)

T� = � cos2�1k
2
m2�� cos2�1k

2
m2

��+ cos�1 k
2
m1sin�1 �

cos�1 k
2
m2sin�1 + cos�1 k

2
m2�

2sin�1 + k2m2� sin
2�1 �

k2m2
�� sin2�1 � cos2�1k

2
m2
��1 � k2m2 sin

2�1��1 �
��GCcos cos�1 egx� ��GScos�1 egsin x+ eg� _�sin�1 x (4.130)
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Tv0 = cos2�1k
2
m2�

_�+ 3cos�1 k
2
m2

_�sin�1 �

3k2m2�
_� sin2�1 � cos�1 egx+ eg�sin�1 x (4.131)

Tw0 = � cos2�1k
2
m2

_�+ 4cos�1 k
2
m2�

_�sin�1 +

2k2m2
_� sin2�1 � cos�1 eg�x� egsin�1 x (4.132)

Txh = ��hcos�p h� cos�p cos cos�1 eg� _�+ cos�1 eg ��sin�p �

cos�p cos�1 egsin � cos�p cos�1 eg _�
2sin �

cos�p cos�1 eg���sin � 2cos�p cos eg _�sin�1 �

eg _�
2sin�p sin�1 � eg���sin�p sin�1 +

cos�p eg�sin sin�1 � cos�p eg ��sin sin�1 +

cos�1 egsin�p ��1 � cos�p cos�1 eg�sin ��1 �

eg�sin�p sin�1 ��1 � cos�p egsin sin�1 ��1 + cos�p cos u+

2cos�p sin _u� cos�p cos �u� cos�p sin v + 2cos�p cos _v +

cos�p sin �v + sin�p �w + cos�p cos x� �hcos sin�p x+

��hcos sin�p x� �GCcos sin�p x+ ��GCcos sin�p x+

2 _�GScos sin�p x� 2 _�hsin�p sin x� 2 _�GCsin�p sin x�

�GSsin�p sin x+ ��GSsin�p sin x� �xh � sin x�h +

2cos x _�h + sin x��h (4.133)

Tyh = cos cos�1 eg � cos�p h��h + cos cos�1 eg _�
2 +

cos cos�1 eg���� cos�1 eg� _�sin �

cos eg�sin�1 + cos eg ��sin�1 � 2eg _�sin sin�1 +

cos cos�1 eg���1 + cos egsin�1 ��1 + sin u�

2cos _u� sin �u+ cos v + 2sin _v � cos �v +

cos �hsin�p x� cos ��hsin�p x+ sin x+ 2 _�hsin�p sin x�

�yh + cos�p cos x�h + 2cos�p sin x _�h + hsin�p ��h �
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cos�p cos x��h (4.134)

Tzh = �cos�p cos�1 eg ��+ ��hhsin�p �

cos cos�1 eg� _�sin�p � cos�1 egsin�p sin �

cos�1 eg _�
2sin�p sin � cos�1 eg���sin�p sin +

cos�p eg _�
2sin�1 + cos�p eg���sin�1 �

2cos eg _�sin�p sin�1 + eg�sin�p sin sin�1 �

eg ��sin�p sin sin�1 � cos�p cos�1 eg��1 �

cos�1 eg�sin�p sin ��1 + cos�p eg�sin�1 ��1 �

egsin�p sin sin�1 ��1 + cos sin�p u+ 2sin�p sin _u�

cos sin�p �u� sin�p sin v + 2cos sin�p _v + sin�p sin �v �

cos�p �w + �hcos�p cos x� ��hcos�p cos x+ �GCcos�p cos x�
��GCcos�p cos x� 2 _�GScos�p cos x+ 2cos _�hx+

cos sin�p x+ 2 _�hcos�p sin x+ 2 _�GCcos�p sin x+

�GScos�p sin x� ��GScos�p sin x� �hsin x+

��hsin x� �zh (4.135)

T�h = ���hh
2 + cos cos�1 egh� _�+ cos�1 eghsin +

cos�1 egh _�
2sin + cos�1 egh���sin +

2cos egh _�sin�1 � egh�sin sin�1 +

egh��sin sin�1 + cos�1 egh�sin ��1 +

eghsin sin�1 ��1 � cos hu� 2hsin _u+ cos h�u+

hsin v � 2cos h _v � hsin �v � cos hx�

cos cos�1 eg ��x� 2cos h _�hsin�p x+ h�hsin�p sin x�

h��hsin�p sin x+ cos eg _�
2sin�1 x+

cos eg���sin�1 x� cos cos�1 eg��1x+
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cos eg�sin�1 ��1x� cos �wx+ �hcos 
2x2 �

��hcos 
2x2 + �GCcos 

2x2 � ��GCcos 
2x2 �

2 _�GScos 
2x2 + 2cos�p cos 

2 _�hx
2 +

2 _�hcos sin x2 + 2 _�GCcos sin x2 +

�GScos sin x2 � ��GScos sin x2 �

cos�p cos �hsin x
2 + cos�p cos ��hsin x

2 + cos�p h�xh +

cos sin�p x�xh + hsin�p �zh � cos�p cos x�zh +

cos�p hsin x�h + cos sin�p sin x
2�h � 2cos�p cos hx _�h �

2cos 2sin�p x
2 _�h � cos�p hsin x��h �

cos sin�p sin x
2��h (4.136)

T�h = cos�p cos cos�1 egh� cos�p
2h2 ��h +

cos�p cos cos�1 egh _�
2 + cos�p cos cos�1 egh����

cos�p cos�1 egh� _�sin � cos�p cos egh�sin�1 +

cos�p cos egh��sin�1 � 2cos�p egh _�sin sin�1 +

cos�p cos cos�1 egh���1 + cos�p cos eghsin�1 ��1 +

cos�p hsin u� 2cos�p cos h _u� cos�p hsin �u+

cos�p cos hv + 2cos�p hsin _v � cos�p cos h�v +

cos�1 egsin�p x+ cos�p cos h�hsin�p x�

2cos�p cos h��hsin�p x+ cos�1 eg _�
2sin�p x+

cos�1 eg���sin�p x+ cos�p hsin x+

cos�p cos�1 eg ��sin x� ��hhsin�p sin x+

2cos�p h _�hsin�p sin x� eg�sin�p sin�1 x+

eg ��sin�p sin�1 x� cos�p eg _�
2sin sin�1 x�

cos�p eg���sin sin�1 x+ cos�1 eg�sin�p ��1x+
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cos�p cos�1 egsin ��1x+ egsin�p sin�1 ��1x�

cos�p eg�sin sin�1 ��1x� 2sin�p _ux+ sin�p vx�

sin�p �vx+ cos�p sin �wx+ cos 2�hsin�p
2x2 �

cos 2 ��hsin�p
2x2 � �hcos�p cos sin x2 +

��hcos�p cos sin x2 � �GCcos�p cos sin x2 +

��GCcos�p cos sin x2 + 2 _�GScos�p cos sin x2 �

2cos _�hsin x
2 + 2cos _�hsin�p

2sin x2 �

2 _�hcos�p sin 
2x2 � 2 _�GCcos�p sin 

2x2 �

�GScos�p sin 
2x2 + ��GScos�p sin 

2x2 + �hsin 
2x2 �

��hsin 
2x2 � cos�p h�yh � cos sin�p x�yh +

sin x�zh + cos�p
2cos hx�h + cos�p cos 

2sin�p x
2�h +

2cos�p
2hsin x _�h + 2cos�p cos sin�p sin x

2 _�h +

cos�p h
2sin�p ��h � cos�p

2cos hx��h +

cos hsin�p
2x��h � cos�p cos 

2sin�p x
2��h (4.137)

T�h = �(cos cos�1 eghsin�p ) + cos�p h
2 ��hsin�p �

cos cos�1 egh _�
2sin�p � cos cos�1 egh���sin�p +

cos�1 egh� _�sin�p sin + cos egh�sin�p sin�1 �

cos egh��sin�p sin�1 + 2egh _�sin�p sin sin�1 �

cos cos�1 egh�sin�p ��1 � cos eghsin�p sin�1 ��1 �

hsin�p sin u+ 2cos hsin�p _u+ hsin�p sin �u�

cos hsin�p v � 2hsin�p sin _v + cos hsin�p �v +

cos�p cos�1 egx� cos�p
2cos h��hx+ cos�p cos�1 eg _�

2x+

cos�p cos�1 eg���x� cos h�hsin�p
2x+

cos h��hsin�p
2x� ��hcos�p hsin x� hsin�p sin x�
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cos�1 eg ��sin�p sin x� 2h _�hsin�p
2sin x�

cos�p eg�sin�1 x+ cos�p eg ��sin�1 x+

eg _�
2sin�p sin sin�1 x+ eg���sin�p sin sin�1 x+

cos�p cos�1 eg���1x� cos�1 egsin�p sin ��1x+

cos�p egsin�1 ��1x+ eg�sin�p sin sin�1 ��1x�

2cos�p _ux+ cos�p vx� cos�p �vx� sin�p sin �wx+

cos�p cos 
2�hsin�p x

2 � cos�p cos 
2 ��hsin�p x

2 +

�hcos sin�p sin x
2 � ��hcos sin�p sin x

2 +

�GCcos sin�p sin x
2 � ��GCcos sin�p sin x

2 �

2 _�GScos sin�p sin x
2 + 2cos�p cos _�hsin�p sin x

2 +

2 _�hsin�p sin 
2x2 + 2 _�GCsin�p sin 

2x2 +

�GSsin�p sin 
2x2 � ��GSsin�p sin 

2x2 + sin x�xh +

hsin�p �yh � cos�p cos x�yh � cos�p cos hsin�p x�h +

cos�p
2cos 2x2�h + sin 2x2�h �

2cos�p hsin�p sin x _�h � 2cos sin x2 _�h +

2cos�p
2cos sin x2 _�h � h2sin�p

2��h +

2cos�p cos hsin�p x��h � cos�p
2cos 2x2��h �

sin 2x2��h (4.138)

T�GC = �cos cos�1 eg ��x+ cos eg _�
2sin�1 x+

cos eg���sin�1 x� cos cos�1 eg��1x+

cos eg�sin�1 ��1x� cos �wx� _�GSx
2 +

�hcos 
2x2 � ��hcos 

2x2 + �GCcos 
2x2 �

��GCcos 
2x2 � _�GScos 

2x2 + 2cos�p cos 
2 _�hx

2 +

2 _�hcos sin x2 + 2 _�GCcos sin x2 +
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�GScos sin x2 � ��GScos sin x2 �

cos�p cos �hsin x
2 + cos�p cos ��hsin x

2 +

_�GSsin 
2x2 + cos sin�p x�xh � cos�p cos x�zh +

cos sin�p sin x
2�h � 2cos 2sin�p x

2 _�h �

cos sin�p sin x
2��h (4.139)

T�GS = �cos�1 eg ��sin x+ eg _�
2sin sin�1 x+

eg���sin sin�1 x� cos�1 egsin ��1x+

eg�sin sin�1 ��1x� sin �wx+ _�GCx
2 �

_�GCcos 
2x2 + �hcos sin x2 � ��hcos sin x2 +

�GCcos sin x2 � ��GCcos sin x2 �

2 _�GScos sin x2 + 2cos�p cos _�hsin x
2 +

2 _�hsin 
2x2 + _�GCsin 

2x2 + �GSsin 
2x2 �

��GSsin 
2x2 � cos�p �hsin 

2x2 + cos�p ��hsin 
2x2 +

sin�p sin x�xh � cos�p sin x�zh + sin�p sin 
2x2�h �

2cos sin�p sin x
2 _�h � sin�p sin 

2x2��h (4.140)

4.5 Structural Contributions to Mass, Damp-

ing, and Sti�ness

The contributions of the structural model to the element mass, damping, and

sti�ness matrices is derived in this section based on the strain and kinetic energies

formulated in the present chapter. The total energies produced by the hub and

blade can be summed as

�U =

2
4 NbX
m=1

�Ub

3
5+ �Uh (4:141)
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for the variation of elastic strain energy and as

�T =

2
4 NbX
m=1

�Tb

3
5+ �Th (4:142)

for the variation of kinetic energy. Application of Hamilton's principle then gives

the discretized form of the total energy as

�� =
Z  F

 I

(�Ui � �Ti � �Wi) d = 0 (4:143)

where i is the ith element of the rotor blade which is discretized into Nb elements.

For the present section, the work contribution is zero (the structural model con-

serves energy).

The element for which the present structural matrices are de�ned is the same

one used in the past UMARC formulations for metal blades which has 15 discrete

degrees of freedom. It is possible to base the present anisotropic beam formulation

on this element only because the static condensation process is used to eliminate

the shear degrees of freedom from the strain energy formulation. The continuous

degrees of freedom for the blade are related to the discrete degrees of freedom for

this element as follows:

û = [Hs] q̂ (4.144)

û0 = [H 0

s] q̂ (4.145)

û00 = [H 00

s ] q̂ (4.146)

_̂u = [Hs] _̂q (4.147)

�̂u = [Hs] �̂q (4.148)

where the shape function matrix is de�ned as

[Hs] =

2
6666666664

Hu 0 0 0

0 Hb 0 0

0 0 Hb 0

0 0 0 H�

3
7777777775

(4:149)

162



and the discrete (nodal) degrees of freedom are de�ned as

q̂ = [u1 u2 u3 u4 v1 v
0

1 v2 v
0

2 w1 w
0

1 w2 w
0

2 �1 �2 �3] (4:150)

The shape function matrices are matrices of polynomials which satisfy Eqn. 3.151.

Hu is a 4 x 1 matrix of C0 continuous cubic polynomials, Hb is a 4 x 1 matrix

of C1 continuous cubic polynomials, and H� is a 3 x 1 matrix of C0 continuous

quadratic polynomials.

The hub degrees of freedom are already discrete, and may be written in matrix

form as

x̂h = [xh yh zh �h �h �h �GC �GS] (4:151)

4.5.1 Blade Matrices

The total energy variation as given by Eqn. 4.143 contains variational terms of both

the blade and the hub. The terms which are coe�cients of the blade variational

degrees of freedom �q̂ constitute the blade equations, and the terms which are coef-

�cients of the hub variational degrees of freedom �x̂h constitute the hub equations.

The present section deals with the blade equations which may be written in matrix

form as:

�Ui��Ti = �q̂T ([Mbb]�̂q+[Cbb] _̂q+[Kbb]q̂+[Mbh]�̂xh+[Cbh] _̂xh+[Kbh]x̂h�Fb)i (4:152)

where the subscript b indicates association with the blade, h indicates association

with the hub, and i indicates the ith element of Nb elements of which the blade has

been discretized. Each of these matrices may be partitioned by the blade and hub

degrees of freedom; (u; v; w, or �) of the blade, and (xh; yh; zh; �h; �h; �h; �GC ;
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or �GS) of the hub which appear in the energy expressions. For example,

[Mbb] =

2
6666666664

Muu Muv Muw Mu�

Mvu Mvv Mvw Mv�

Mwu Mwv Mww Mw�

M�u M�v M�w M��

3
7777777775

(4:153)

Based on the strain and kinetic energies derived in the present formulation, and

after substitution of Eqns. 4.144-4.148, these matrix partitions are de�ned as fol-

lows: the blade-blade mass matrix is symmetric so that only the upper trianglular

terms are listed as

Muu =
Z 1

0
mHT

uHu ds (4.154)

Muv = 0 (4.155)

Muw = 0 (4.156)

Mu� = 0 (4.157)

Mvv =
Z 1

0
mHT

b Hb ds (4.158)

Mvw = 0 (4.159)

Mv� = �
Z 1

0
megsin�1H

T
b H� ds (4.160)

Mww =
Z 1

0
mHT

b Hb ds (4.161)

Mw� =
Z 1

0
megcos�1H

T
b H� ds (4.162)

M�� =
Z 1

0
mk2mH�H� ds (4.163)

the blade-blade damping matrix is anti-symmetric so that Cij = �Cji and the

upper triangular terms are listed as

Cuu = 0 (4.164)

Cuv = �
Z 1

0
2m
Hu

THb ds (4.165)

Cuw = 0 (4.166)
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Cu� = 0 (4.167)

Cvv =
Z 1

0
2m
egcos�1Hb

0THb ds�
Z 1

0
2m
egcos�1Hb

THb
0 ds (4.168)

Cvw = �
Z 1

0
2m
�pHb

THb ds�
Z 1

0
2m
egsin�1Hb

THb
0 ds (4.169)

Cv� = 0 (4.170)

Cww = 0 (4.171)

Cw� = 0 (4.172)

C�� = 0 (4.173)

the blade-blade sti�ness matrix is symmetric so that only the upper triangular

terms are listed as

Kuu =
Z 1

0

�EAH 0T
u H

0

u ds (4.174)

Kuv = �
Z 1

0

�EAccos�1Hu
0THb

00 ds (4.175)

Kuw = �
Z 1

0

�EAcsin�1Hu
0THb

00 ds (4.176)

Ku� =
Z 1

0

�EAr2�
0

0Hu
0TH�

0 ds+
Z 1

0
EETHu

0TH�
0 ds (4.177)

Kvv =
Z 1

0
FAH

0T
b H

0

b ds�
Z 1

0
m
2Hb

THb ds

+
Z 1

0
( �EIfsin

2�1 + �EIccos
2�1)Hb

00THb
00 ds (4.178)

Kvw =
Z 1

0
( �EIc � �EIf )sin�1cos�1Hb

00THb
00 ds (4.179)

Kv� =
Z 1

0
m
2egsin�1Hb

TH� ds�
Z 1

0
mx
2egsin�1Hb

0TH� ds

+
Z 1

0
(ETCcos�1 � ETF sin�1)Hb

00TH�
0 ds

�
Z 1

0
�pFA(Hb

0TH� +Hb
TH�

0) ds (4.180)

Kww =
Z 1

0
FAH

0T
b H

0

b ds+
Z 1

0
( �EIcsin

2�1 + �EIfcos
2�1)Hb

00THb
00 ds (4.181)

Kw� =
Z 1

0
mx
2egcos�1Hb

0TH� ds+Z 1

0
(ETF cos�1 + ETCsin�1)Hb

00TH�
0 ds (4.182)

K�� =
Z 1

0
m
2(k2m2 � k2m1) cos2�0H�

TH� ds+
Z 1

0

�GJH�
0TH� ds (4.183)
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and the constant force terms are the same as those associated with the original

UMARC formulation, and are listed for completeness as

Fu =
Z 1

0
mx
2Hu

T ds (4.184)

Fv =
Z 1

0
m(
2egcos�1 + ��0egsin�1)Hb

T ds�Z 1

0
mx
2egcos�1Hb

0T ds (4.185)

Fw = �
Z 1

0
m(
2�px+ ��0egsin�1)Hb

T ds�Z 1

0
mx
2egsin�1Hb

0T ds (4.186)

F� = �
Z 1

0
mk2m

��0 +m
2(k2m2 � k2m1)sin�1cos�1H�
T ds

�
Z 1

0
m
2�pegcos�1xH�

T ds (4.187)

The underlined terms in the above equations are the additions to the blade-blade

structural matrices for the present formulation over those of the UMARC metal-

blade helicopter formulation. These terms account for the elastic coupling between

extension, bending, and twist deformations as well as the precone e�ect which cou-

ples lag bending and twist deformation. These terms represent signi�cant contri-

butions to the original formulation because 1) it allows inclusion of elastic coupling

based on the classical beam element thereby reducing analytical modi�cations, and

2) accounts for the pitch-lag coupling due to precone which will be shown to have

a signi�cant impact on tiltrotor stability predictions. The reduction in classical

beam sti�nesses due to coupling with shear deformations is accounted for by use

of the e�ective beam properties as indicated by the overbar on the terms a�ected.

The original form of the equations associated with these properties is unchanged

from the metal blade formulation. As shown, there are no modi�cations to the

original mass, damping, or force blade-blade system matrices.
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The blade-hub matrices are also partitioned, for example:

[Mbh] =

2
6666666664

Muxh Muyh Muzh Mu�h Mu�h Mu�h Mu�GC Mu�GS

Mvxh Mvyh Mvzh Mv�h Mv�h Mv�h Mv�GC Mv�GS

Mwxh Mwyh Mwzh Mw�h Mw�h Mw�h Mw�GC Mw�GS

M�xh M�yh M�zh M��h M��h M��h M��GC M��GS

3
7777777775
(4:188)

Based on the strain and kinetic energies derived in the present formulation, these

matrix partitions are de�ned as follows: the nonzero terms of the blade-hub mass

matrix are given by,

Mv;�h =
Z 1

0
mxsin�p Hb

T ds (4.189)

Mv;�h =
Z 1

0
mxcos�p Hb

T ds (4.190)

Mw;xh = �
Z 1

0
msin�p Hb

T ds (4.191)

Mw;zh =
Z 1

0
mcos�p Hb

T ds (4.192)

M�;xh = �
Z 1

0
megcos�1sin�p H�

T ds (4.193)

M�;zh =
Z 1

0
mcos�p egcos�1H�

T ds (4.194)

M�;�h = �
Z 1

0
mxegsin�1sin�p H�

T ds (4.195)

M�;�h = �
Z 1

0
mxcos�p egsin�1H�

T ds (4.196)

the nonzero terms of the blade-hub damping matrix are given by,

Cu;�h = �
Z 1

0
2mxsin�p Hu

T ds (4.197)

Cu;�h = �
Z 1

0
2mxcos�p Hu

T ds (4.198)

Cv;�h =
Z 1

0
2mxegcos�1sin�p Hb

0T ds (4.199)

Cv;�h =
Z 1

0
2mxcos�p egcos�1Hb

0T ds (4.200)

Cw;�h =
Z 1

0
2mxegsin�1sin�p Hb

0T ds (4.201)

Cw;�h =
Z 1

0
2mxcos�p egsin�1Hb

0T ds (4.202)
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and all the terms of the blade-hub sti�ness matrix are zero. Many terms from the

energy expressions which appear to contribute to the system matrices are made

zero by the following relationships:

Z 2�

0
a(s) cos d = 0 (4.203)Z 2�

0
a(s) sin d = 0 (4.204)Z 2�

0
a(s) cos sin d = 0 (4.205)

Since these terms are summed over one rotor revolution in the coupled-trim and

stability calculations (to be discussed in Chapters 6 and 7) the net in
uence is zero,

and there is no need to include these terms in the system matrix calculations. All

terms associated with the hub motion are new, and do not appear in the original

UMARC formulation. There are, however, parallels between the formulations when

the pylon angle is set to zero degrees (straight up like in helicopter mode). In this

case the hub-related system matrices of the present formulation will match the

fuselage-related system matrices of the original UMARC formulation, except that

the hub (or fuselage) yawing degree of freedom, �h, was not included there.

4.5.2 Hub Matrices

This section deals with the hub equations which may be written in matrix form

as:

� = �x̂Th ([Mhb]�̂q + [Chb] _̂q + [Khb]q̂ + [Mhh]�̂xh + [Chh] _̂xh + [Khh]x̂h � Fh) (4:206)

where, again, the subscript b refers to the blade and h refers to the hub. These

matrices are partitioned by the associated degrees of freedom in the hub and blade

similar to the examples of the previous section. Based on the strain and kinetic

energies derived in the present formulation, the matrix partitions are de�ned as
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follows: the nonzero terms of the hub-blade mass matrix are given by,

M�h;v =
Z 1

0
mxsin�p Hb ds (4.207)

M�h;v =
Z 1

0
mxcos�p Hb ds (4.208)

Mxh;w = �
Z 1

0
msin�p Hb ds (4.209)

Mzh;w =
Z 1

0
mcos�p Hb ds (4.210)

Mxh;� = �
Z 1

0
megcos�1sin�p H� ds (4.211)

Mzh;� =
Z 1

0
mcos�p egcos�1H� ds (4.212)

M�h;� = �
Z 1

0
mxegsin�1sin�p H� ds (4.213)

M�h;� = �
Z 1

0
mxcos�p egsin�1H� ds (4.214)

the nonzero terms of the hub-blade damping matrix are given by,

C�h;u =
Z 1

0
2mxsin�p Hu ds (4.215)

C�h;v =
Z 1

0
2mxegcos�1sin�p Hb

0 ds (4.216)

C�h;u =
Z 1

0
2mxcos�p Hu ds (4.217)

C�h;v =
Z 1

0
2mxcos�p egcos�1Hb

0 ds (4.218)

C�h;w =
Z 1

0
2mx(�psin�p Hb � egsin�1sin�p Hb

0) ds (4.219)

C�h;w =
Z 1

0
2mx(�pcos�p Hb � cos�p egsin�1Hb

0) ds (4.220)

C�h;� =
Z 1

0
2mx�pegcos�1sin�p H� ds (4.221)

C�h;� =
Z 1

0
2mx�pcos�p egcos�1H� ds (4.222)

and all the terms of the hub-blade sti�ness matrix are zero.

The nonzero terms of the hub-hub mass matrix are given by,

Mxh;xh =
Z 1

0
mds (4.223)

Mxh;�h = �
Z 1

0
m cos�p h ds (4.224)

169



Myh;yh =
Z 1

0
mds (4.225)

Myh;�h =
Z 1

0
m cos�p h ds (4.226)

Myh;�h = �
Z 1

0
mh sin�p ds (4.227)

Mzh;zh =
Z 1

0
mds (4.228)

Mzh;�h = �
Z 1

0
mh sin�p ds (4.229)

M�h;xh = �
Z 1

0
m cos�p h ds (4.230)

M�h;zh = �
Z 1

0
mh sin�p ds (4.231)

M�h;�h =
Z 1

0
m(h2 + cos2 x2) ds (4.232)

M�h;�GC =
Z 1

0
mcos2 x2 ds (4.233)

M�h;�h =
Z 1

0
m(cos2�p h

2 + cos2 sin2�p x
2 + sin2 x2) ds (4.234)

M�h;�h =
Z 1

0
m(�cos�p h2sin�p + cos�p cos

2 sin�p x
2) ds (4.235)

M�h;�GS =
Z 1

0
m� cos�p sin

2 x2 ds (4.236)

M�h;yh = �
Z 1

0
mh sin�p ds (4.237)

M�h;�h =
Z 1

0
m(�cos�p h2sin�p + cos�p cos

2 sin�p x
2) ds (4.238)

M�h;�h =
Z 1

0
m(h2sin2�p + cos2�p cos

2 x2 + sin2 x2) ds (4.239)

M�h;�GS =
Z 1

0
m sin�p sin

2 x2 ds (4.240)

M�GC ;�h =
Z 1

0
m cos2 x2 ds (4.241)

M�GC ;�GC =
Z 1

0
m cos2 x2 ds (4.242)

M�GS ;�h = �
Z 1

0
m cos�p sin

2 x2 ds (4.243)

M�GS ;�h =
Z 1

0
m sin�p sin

2 x2 ds (4.244)

M�GS ;�GS =
Z 1

0
m sin2 x2 ds (4.245)

170



the nonzero terms of the hub-hub damping matrix are given by,

C�h;�h =
Z 1

0
2m cos�p cos

2 x2 ds (4.246)

C�h;�h =
Z 1

0
2m cos2 sin�p x

2 ds (4.247)

C�h;�GS =
Z 1

0
2m cos2 x2 ds (4.248)

C�h;�h =
Z 1

0
2m cos�p sin

2 x2 ds (4.249)

C�h;�GC =
Z 1

0
2m cos�p sin

2 x2 ds (4.250)

C�h;�h =
Z 1

0
2m sin�p sin

2 x2 ds (4.251)

C�h;�GC =
Z 1

0
2m sin�p sin

2 x2 ds (4.252)

C�GC ;�h =
Z 1

0
2m cos�p cos

2 x2 ds (4.253)

C�GC ;�h =
Z 1

0
2m cos2 sin�p x

2 ds (4.254)

C�GC ;�GS =
Z 1

0
2m cos2 x2 ds (4.255)

C�GS ;�h =
Z 1

0
2m sin2 x2 ds (4.256)

C�GS ;�GC = �
Z 1

0
2m sin2 x2 ds (4.257)

and the nonzero terms of the hub-hub sti�ness matrix are given by,

K�h;�GC = �
Z 1

0
cos2 x2 ds (4.258)

K�h;�GS =
Z 1

0
cos�p sin

2 x2 ds (4.259)

K�h;�GS = �
Z 1

0
sin�p sin

2 x2 ds (4.260)

K�GC ;�h = �
Z 1

0
cos2 x2 ds (4.261)

K�GC ;�GC =
Z 1

0
�cos2 x2 ds+K�GC (4.262)

K�GS ;�h = �
Z 1

0
sin�p sin

2 x2 ds (4.263)

K�GS ;�GS = �
Z 1

0
sin2 x2 ds+K�GS (4.264)

Again, several terms from the energy expression are made zero because they have

no net in
uence after integration around one revolution of the azimuth. It may
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be surprising that there are nonzero blade-related terms in the hub-hub sti�ness

matrix. These terms do not add sti�ness to the hub as they appear to do, but

serve to cancel out the blade-related hub-hub mass contributions to sti�ness which

occur when those terms are transformed into a nonrotating reference frame. Notice

the similar form of the blade-related mass and sti�ness terms of the same indices.

The blade-related mass terms are necessary because the blades contribute to the

overall inertial properties of the hub. The natural process for these inertial terms

is to contribute sti�ness when a transformation from the rotating system to a

�xed system takes place. The hub degrees of freedom are in a �xed system, but

it is intuitive that there should be no sti�ness contributions from the blade to

the hub sti�nesses (in vacuum). The energy expressions take this into account

by subtracting these sti�ness contributions out, as is the role of the blade-related

hub-hub sti�ness terms listed above. The contributions from the hub strain energy

are shown in the form of the sti�nesses K�GC and K�GS . There is no strain energy

associated with any of the other six degrees of freedom because they are, at present,

free in space. The sti�ness that will be associated with these degrees of freedom

comes from the wing during the stability analysis matrix assembly process to be

discussed in Chapter 7.

4.5.3 Wing Matrices

The wing is discretized as an elastic beam using the same beam element as that

of the rotor blade. Because of this, the structural mass, damping, and sti�ness

matrices are the same as those for the rotor blade with a very few modi�cations.

First, the wing is �xed so 
 = 0. This makes all the structural contributions to the

damping matrices zero also. Second, there is no precone so all terms containing �p

are zero. Third, there is no twist or control collective or cyclic to the value of �1

is zero. Fourth, the hub motions are self-contained in the wing matrices so there
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are no wing-hub matrices. The wing system matrices are thus given as

[Mww] = [Mbb] ; (�p = 
 = �1 = 0) (4.265)

[Kww] = [Kbb] ; (�p = 
 = �1 = 0) (4.266)

[Cww] = 0 (4.267)

The motion of the wing is coupled to the hub (for stability calculations) by the

six wing tip nodal displacements which correspond to six of the hub degrees as

follows:

Wing dof Hub dof

u1 = �yh (4.268)

v1 = xh (4.269)

v01 =  h (4.270)

w1 = zh (4.271)

w0

1 = ��h (4.272)

�1 = ��h (4.273)

where u1; v1; v
0

1; w1; w
0

1; and �1 represent the discrete degrees of freedom at the

wing tip. For trim and performance analysis, the wing is assumed to be rigid, and

the hub degrees of freedom are �xed.
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Airplane Mode

Helicopter Mode

Figure 4.1: Basic tiltrotor con�guration used for derivation of equations of motion.
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Ii

Ki

Ji

Wing after deformation

Kw

Jw

Iw

Wing before deformation

yh

φh

zh

xh

ζh αh

Hub translations associated
with wing deformation.

Hub rotations associated with
wing deformation.

Figure 4.2: Tiltrotor coordinate system de�nition: inertial and wing reference

frames showing hub motions.
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Kw

Jw

Iw

Jh

Ih

Kh

αp

Figure 4.3: Tiltrotor coordinate system de�nition: wing and hub reference frames

showing pylon angle and rigid pylon o�set.
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Jw

Iw

Jh

Ih

Kh

αp

ψ

Kw

Kr,

Ir

Jr

Figure 4.4: Tiltrotor coordinate system de�nition: wing, hub, and rotating-blade

reference frames.
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Jh

Ih

Kh

βGS

βGC

Figure 4.5: Tiltrotor coordinate system de�nition: hub and gimbal reference frames

in �xed system.
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Jh

Ih

Kh

ψ

Kr,

Ir

Jr

βp + βG

Iu

, Ju

Ku

ψ

βp + βG

Figure 4.6: Tiltrotor coordinate system de�nition: hub, rotating-blade, and

undeformed-blade reference frames showing precone and gimbal angles.
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Chapter 5

Aerodynamic Modeling

The tiltrotor con�guration requires several substantial modi�cations to the he-

licopter aerodynamic modeling as available in UMARC. The modi�cations are

necessary because of the large angle of attack of the pylon and requirements for

additional hub-related degrees of freedom for the tiltrotor model. The required

changes are extensive, and thus it becomes necessary to derive the new aerody-

namic system equations from basic principles. This derivation is performed in the

current chapter.

The aerodynamic formulation is limited to the quasi-steady aerodynamics mod-

eling. The quasi-steady aerodynamic analysis assumes the blade loads are a func-

tion of instantaneous blade section angle of attack at each blade spanwise location.

Furthermore, the section lift, drag, and moment coe�cients are based solely on

static data associated with the airfoil of the particular spanwise location. The

quasi-steady aerodynamic loading is dependent on the local velocities of the blade

which are functions of the free-stream velocity, blade motion relative to an inertial

frame, hub motion relative to an inertial frame, and the fuselage motion relative

to an inertial frame. Fuselage motion, however, is not considered in the present

formulation. It is apparent that the blade loads are motion dependent (functions of

the hub and blade degrees of freedom), and as such they contribute to the system
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mass, damping, and sti�ness matrices as well as the load vector.

The aerodynamic forces are initially calculated in the deformed blade frame.

This is particularly advantageous for a tiltrotor con�guration because in the de-

formed frame, the high-in
ow aerodynamics, which create di�culties for the aero-

dynamic modeling of rigid blade linear systems (because of high in
ow angles),

are treated in precisely the same manner as the helicopter low-in
ow aerodynam-

ics. The main di�erence between the helicopter and tiltrotor aerodyamics is in the

transformation matrices which relate the blade loads and velocities in the deformed

frame to an inertial frame of reference.

In the �rst section of this chapter, the local blade section velocities are derived

in the deformed blade system. The aerodynamic loads associated with these ve-

locities are de�ned in the following section, and are transformed into the inertial

reference system. The work performed by the loads is derived in the next section,

and Hamilton's principle is used to obtain the discretized �nite-element matrices

associated with the hub and blade degrees of freedom. The aerodynamic model

for the wing is discussed in the �nal section of this chapter.

5.1 Derivation of Local Rotor Blade Velocities

The velocity components in the three principal deformed frame axes are derived

using the same reference frames as those used to de�ne the structural model in

Chapter 4. There are three contributions to the velocities considered in the present

derivation: the aircraft forward 
ight velocity, the blade motion, and the hub mo-

tion. As mentioned previously, the fuselage motion contribution is not considered

in the present formulation. The general expression of the local velocity vector at

a particular blade station can be written relative to any frame of reference as

~V = ~Vb + ~Vh � ~Vw (5:1)
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where ~Vb; ~Vh; and ~Vw represent the blade, hub and relative wind contributions,

respectively, to the total velocity. Each velocity vector will eventually be de�ned

in the deformed blade reference frame, but it is advantageous to initially de�ne each

contribution in separate frames and transform the results into the deformed frame.

The wind velocity and hub motions are initially de�ned in the inertial reference

frame, while the blade motions are initially de�ned in the rotating reference frame.

The relative wind velocity is given by

~Vw = �
R Îi � �i
R K̂h (5:2)

where � = V=
R is de�ned as the advance ratio and �i is the induced 
ow produced

by the thrusting rotor. The advance ratio in this case is de�ned in a slightly

di�erent form than that used in pure helicopter theory where � = V cos�s=
R.

The induced 
ow is shown to be de�ned in the hub reference frame because thrust

is de�ned perpendicular to the hub plane. The wind velocity is written in the

inertial reference frame in vector form as

~Vw = (f�
R; 0; 0g+ f0; 0;��i
Rg[Tgi])

8>>>>><
>>>>>:

Îi

Ĵi

K̂i

9>>>>>=
>>>>>;

(5:3)

The contribution of the blade and hub velocities is determined by taking the

time derivative of the position vector in the inertial frame. This approach elimi-

nates the need to determine the time rate of change of a local rotating reference

frame with respect to an inertial frame since the local frame in this case is the

inertial frame. The position vector of an arbitrary point on the cross section of

the deformed blade is given by:

~R = fxhÎi; yhĴi; zhK̂ig+ hK̂w + f(x+ u)Îu; vĴu; wK̂ug+ �Ĵd (5:4)

which may be written entirely in the inertial reference frame as

~R = (fxh; yh; zhg+ f0; 0; hg[Twi] + f(x+ u); v; wg[Tui]
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+f0; �; 0g[Tdi])

8>>>>><
>>>>>:

Îi

Ĵi

K̂i

9>>>>>=
>>>>>;

(5.5)

The blade and hub degrees of freedom are functions of time as is the azimuth angle

 which may be written as 
t. The precone angle �p is assumed to be constant.

The velocity due to blade and hub motions is then de�ned by

~Vb + ~Vh =
@ ~R

@t
= Vbx Îi + Vby Ĵi + VbzK̂i (5:6)

The wind velocity as de�ned by Eqn. 5.3 is then subtracted from the hub and blade

velocity contributions. The total velocity is then transformed into the deformed

frame as follows

~Vb + ~Vh � ~Vw = (fVbx ; Vby ; Vbzg+ f��
R; 0; 0g

+f0; 0; �i
Rg[Thi]) [Tid]

8>>>>><
>>>>>:

Îd

Ĵd

K̂d

9>>>>>=
>>>>>;

(5.7)

which is simpli�ed to the notation

~Vbhw = UrÎd + UtĴd + UpK̂d (5:8)

where Ur, Ut, and Up have been nondimensionalized by the rotor tip speed 
R. In

these expressions the following substitution is made to account for kinematic pitch-

lag and pitch-
ap coupling which may be produced by the gimbal rotor system

controls geometry:

�1 = �1 + k��G + k��h (5:9)

After application of the ordering scheme, and substitution for the rotating frame

gimbal angle �G in terms of �xed frame gimbal angles �GC and �GS (as de�ned

by Eqns. 4.1 and 4.2), the velocity components are de�ned in terms of the blade

and hub degrees of freedom. These velocities are listed in the equations to follow.
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Each velocity component is separated into constant (subscript c), linear (subscript

l), and nonlinear parts (subscript nl), and the linear part is written as a coe�cient

of the system degree of freedom with which it is associated. The radial component

of velocity, which is positive moving from root to tip, is given by

Ur = Rc +Rl +Rnl (5:10)

and

Rc = ��p � �cos�p cos � �rcos�1 + ��psin�p (5.11)

Rl = Ru +Rv +Rv0 + . . . +R _�GC
+R _�GS

Ru = 0 (5.12)

Rv = �1 (5.13)

Rv0 = �cos�p sin + x (5.14)

Rw = 0 (5.15)

Rw0 = �+ ��pcos�p cos + �sin�p (5.16)

R _u = 1 (5.17)

R _v = 0 (5.18)

R _w = 0 (5.19)

R _v0 = ��rcos�1 (5.20)

R _w0 = ��rsin�1 (5.21)

R� = �rsin�1 (5.22)

R _� = 0 (5.23)

R�h = �(cos sin�p + �pcos�p ) (5.24)

R�h = 0 (5.25)

R�h = �sin (5.26)
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R�GC = �cos + �cos sin�p + �rsin sin�1 (5.27)

R�GS = �sin + �sin�p sin � �rcos sin�1 (5.28)

R _xh = �(�psin�p � cos cos�p ) (5.29)

R _yh = sin (5.30)

R _zh = (cos sin�p + �pcos�p ) (5.31)

R _�h = �hcos � �rcos sin�1 (5.32)

R _�h
= hcos�p sin + �r(sin cos�p sin�1 � cos�1 sin�p ) (5.33)

R _�h
= ��rcos�p cos�1 � hsin�p sin � �rsin�p sin sin�1 (5.34)

R _�GC
= ��rcos sin�1 (5.35)

R _�GS
= ��rsin sin�1 (5.36)

Rnl = 0 (5.37)

Rnl is given a zero value using the ordering scheme. As will be shown later in

this chapter, the radial component of velocity only contributes to the aerodynamic

forces through the drag terms which are at least an order of magnitude smaller

than the lift terms. The tangential component of velocity, which is positive moving

from leading to trailing edge, is given by

Ut = Tc + Tl + Tnl (5:38)

and

Tc = �cos�p cos�1 sin + �sin�1 + ��pcos�p cos sin�1 +

�sin�p sin�1 + xcos�1 (5.39)

Tl = Tu + Tv + Tv0 + . . . + T _�GC
+ T _�GS

Tu = cos�1 (5.40)
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Tv = �psin�1 (5.41)

Tv0 = ���pcos�1 � �cos�1 (�psin�p � cos cos�p ) (5.42)

Tw = ��pcos�1 (5.43)

Tw0 = ���psin�1 � �sin�1 (�psin�p � cos cos�p ) (5.44)

T _u = 0 (5.45)

T _v = cos�1 (5.46)

T _w = sin�1 (5.47)

T _v0 = 0 (5.48)

T _w0 = 0 (5.49)

T� = ��cos�p sin�1sin + �cos�1 + ��pcos cos�1cos�p +

�sin�p cos�1 � xsin�1 (5.50)

T _� = 0 (5.51)

T�h = ���pcos sin�p sin�1 + �(cos�p sin�1 � cos�1 sin�p sin ) (5.52)

T�h = 0 (5.53)

T�h = �cos cos�1 � ��psin sin�1 � �cos�1 k� �

��pcos�p cos cos�1 k� � �cos�1 sin�p k� (5.54)

T�GC = �cos�p cos 
2sin�1 � xsin sin�1 + �cos cos�1 k� +

��pcos�p cos 
2cos�1 k� + �cos cos�1 sin�p k� (5.55)

T�GS = �cos�p cos sin sin�1 + cos sin�1 x+ �cos�1 sin k� +

��pcos�p cos cos�1 sin k� + �cos�1 sin�p sin k� (5.56)

T _xh = ��pcos�p cos sin�1 � (cos�p cos�1 sin + sin�p sin�1 ) (5.57)

T _yh = cos cos�1 � �psin sin�1 (5.58)

T _zh = ��pcos sin�p sin�1 + (cos�p sin�1 � cos�1 sin�p sin ) (5.59)

T _�h = h(cos�1 sin + �pcos sin�1 ) + x(cos sin�1 + �pcos�1 sin )(5.60)
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T _�h
= hcos�p cos cos�1 � �phcos�p sin sin�1 +

x�pcos�p cos cos�1 � x(sin cos�p sin�1 � cos�1 sin�p ) (5.61)

T _�h
= �hcos cos�1 sin�p + �phsin�p sin sin�1 + xcos�p cos�1

�x�pcos cos�1 sin�p + xsin�p sin sin�1 (5.62)

T _�GC
= xcos sin�1 (5.63)

T _�GS
= xsin sin�1 (5.64)

Tnl = �GCcos sin�1 v + �GSsin sin�1 v � ��GCcos cos�1 v
0 �

��GCcos cos�1 sin�p v
0 � ��GScos�1 sin v

0 �

��GScos�1 sin�p sin v
0 + cos�1 vv

0 � �GCcos cos�1 w �

�GScos�1 sin w � ��GCcos sin�1 w
0 �

��GCcos sin�p sin�1 w
0 � ��GSsin sin�1 w

0 �

��GSsin�p sin sin�1 w
0 + sin�1 vw

0 +

��2
GCcos�p cos 

3cos�1 k� +

2��GC�GScos�p cos 
2cos�1 sin k� +

��2
GScos�p cos cos�1 sin 

2k� + �GCcos cos�1 _wk� +

�GScos�1 sin _wk� + ��GCcos�p cos 
2cos�1 w

0k� +

��GScos�p cos cos�1 sin w
0k� +

�GC _�GCcos 
2cos�1 xk� + �GC�GScos 

2cos�1 xk� �

�2
GCcos cos�1 sin xk� + _�GC�GScos cos�1 sin xk� +

�2
GScos cos�1 sin xk� + �GC _�GScos cos�1 sin xk� �

�GC�GScos�1 sin 
2xk� + �GS _�GScos�1 sin 

2xk� �

��GCcos sin sin�1 �h � ��GSsin 
2sin�1 �h �

�cos�1 sin v
0�h � �sin sin�1 w

0�h �
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��GCcos�p cos 
2cos�1 k��h �

��GScos�p cos cos�1 sin k��h � cos�1 _wk��h �

�cos�p cos cos�1 w
0k��h � _�GCcos cos�1 xk��h �

�GScos cos�1 xk��h + �GCcos�1 sin xk��h �
_�GScos�1 sin xk��h + cos 2cos�1 x�h

2 +

cos2�p cos�1 sin 
2x�h

2 + cos�p sin�p sin sin�1 x�h
2 +

�GCcos hsin�p sin sin�1 _�h + �GShsin�p sin 
2sin�1 _�h +

cos sin�p sin�1 v _�h + cos�1 hsin�p sin v
0 _�h �

cos cos�1 sin�p w _�h + hsin�p sin sin�1 w
0 _�h �

�GCcos 
2cos�1 sin�p x _�h � �GScos cos�1 sin�p sin x _�h +

�GCcos cos�1 sin�p sin xk� _�h +

�GScos�1 sin�p sin 
2xk� _�h � cos�1 sin�p sin xk��h _�h (5.65)

The perpendicular component of velocity, which is positive moving down through

the rotor, is given by

Up = Pc + Pl + Pnl (5:66)

and

Pc = �cos�1 + ��pcos�p cos cos�1 + �p�r + �cos�1 sin�p

��cos�p sin sin�1 + �r _�1 � xsin�1 (5.67)

Pl = Pu + Pv + Pv0 + . . . + P _�GC
+ P _�GS

Pu = �sin�1 (5.68)

Pv = �pcos�1 (5.69)

Pv0 = ��psin�1 + �sin�1 (�psin�p � cos cos�p ) (5.70)

Pw = �psin�1 (5.71)
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Pw0 = ���pcos�1 + �r � �cos�1 (�psin�p � cos cos�p ) (5.72)

P _u = 0 (5.73)

P _v = �sin�1 (5.74)

P _w = cos�1 (5.75)

P _v0 = 0 (5.76)

P _w0 = 0 (5.77)

P� = ��cos�p sin�1cos � �sin�1 � ��pcos sin�1cos�p �

�sin�p sin�1 � xcos�1 (5.78)

P _� = 0 (5.79)

P�h = �cos�p cos�1 � �sin�p (�pcos cos�1 � sin sin�1 ) (5.80)

P�h = 0 (5.81)

P�h = ��(cos sin�1 + �pcos�1 sin ) + �cos�p cos�1 sin k�

+xcos�1 k� (5.82)

P�GC = �cos�p cos 
2cos�1 + cos �r � xcos�1 sin �

�cos�p cos cos�1 sin k� � xcos cos�1 k� (5.83)

P�GS = �cos�p cos cos�1 sin + �rsin + xcos cos�1 �

�cos�p cos�1 sin 
2k� � xcos�1 sin k� (5.84)

P _xh = ��pcos�p cos cos�1 + (sin cos�p sin�1 � cos�1 sin�p ) (5.85)

P _yh = �(cos sin�1 + �pcos�1 sin ) (5.86)

P _zh = cos�p cos�1 � sin�p (�pcos cos�1 � sin sin�1 ) (5.87)

P _�h = ��rsin + h(�pcos cos�1 � sin sin�1 ) + xcos cos�1

�x�psin sin�1 (5.88)

P _�h
= �cos�p cos �r � hcos�p (cos sin�1 + �pcos�1 sin )�

x�pcos�p cos sin�1 � x(cos�p cos�1 sin + sin�p sin�1 ) (5.89)
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P _�h
= cos �rsin�p + hsin�p (cos sin�1 + �pcos�1 sin ) +

x�pcos sin�p sin�1 � x(cos�p sin�1 � cos�1 sin�p sin ) (5.90)

P _�GC
= xcos cos�1 (5.91)

P _�GS
= xcos�1 sin (5.92)

Pnl = �GCcos cos�1v + �GScos�1sin v +

��GCcos sin�1v
0 + ��GCcos sin�p sin�1v

0 +

��GSsin sin�1v
0 + ��GSsin�p sin sin�1v

0 �

sin�1vv
0 + �GCcos sin�1w +

�GSsin sin�1w � ��GCcos cos�1w
0 �

��GCcos cos�1sin�p w
0 � ��GScos�1sin w

0 �

��GScos�1sin�p sin w
0 + cos�1vw

0 �

�GCcos cos�1 _vk� � ��GCcos�p cos
2 cos�1v

0k� �

��GScos�p cos cos�1sin v
0k� � ��GScos�1 sin

2 �h +

�sin sin�1v
0�h � �cos�1sin w

0�h �

��GC cos
2 cos�1k��h � ��GScos cos�1sin k��h +

cos�1 _vk��h + �cos�p cos cos�1v
0k��h +

cos�p cos�1sin�p sin x�h
2 � cos2 sin�1x�h

2 �

cos2�p sin
2 sin�1x�h

2 + �cos cos�1k��h
2 +

�GCcos cos�1hsin�p sin _�h + �GScos�1hsin�p sin
2 _�h +

cos cos�1sin�p v _�h � hsin�p sin sin�1v
0 _�h +

cos sin�p sin�1w _�h + cos�1hsin�p sin w
0 _�h +

�GC cos
2 sin�p sin�1x _�h + �GScos sin�p sin sin�1x _�h +

�GC cos
2 cos�1hsin�p k� _�h + �GScos cos�1hsin�p sin k� _�h �
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�GCcos�p cos cos�1xk� _�h � �GScos�p cos�1sin xk� _�h +

cos�p cos�1xk��h _�h � �GScos�1sin _vk� �

��GCcos cos�1sin �h + �GScos cos�1hsin�p sin k� _�h �

cos cos�1hsin�p k��h _�h (5.93)

5.2 Quasi-Steady Airloads

Since the blade velocity is de�ned in the deformed blade system, the quasi-steady

airloads based on two-dimensional strip theory are identical for tiltrotor and heli-

copter con�gurations. Only the contributions to the velocity components Ur, Ut,

and Up are changed. The following generic airload expressions are derived in the

UMARC theory manual (Ref. 79), and are applicable in the present formulation.

The nondimensional blade forces are written in the deformed reference frame

(�L)C =

 �V 2

6a
Cl (5.94)

( �D)C =

 �V 2

6a
Cd (5.95)

( �Mac)C =

 �V 2c

6aR
Cm (5.96)

with the aerodynamic coe�cients de�ned at the quarter-chord position by

Cl = c0 + c1� (5.97)

Cd = d0 + d1 j� j +d2�2 (5.98)

Cm = f0 + f1� (5.99)

where c0 is the zero-angle lift coe�cient, c1 is the lift curve slope, d0 is the vis-

cous drag coe�cient, f0 is the zero-angle pitching moment about the aerodynamic

center, d1 and d2 are coe�cients used to curve-�t drag polar data, and f1 is the

moment slope. In the present theory, it is assumed that the aerodynamic center is
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su�ciently close to the quarter-chord that the quarter-chord may be used to de-

�ne the aerodynamic coe�cients. Under this assumption, the parameter f1 should

be zero. It should also be noted that the coe�cient d1 does not have a physical

signi�cance as do d0 and d2 in de�ning the two-dimensional drag, but is provided

as a means for improving the curve �t of drag polar data. The coe�cients de�ned

above are valid only for incompressible attached 
ow conditions. Compressibility

e�ects are accounted for by application of the Prandtl-Glauert factor to c1

c1 =
c1 jM=0p
1�M2

(5:100)

This correction is valid only for subsonic conditions with M � 0:9.

The blade forces of Eqns. 5.94-5.96 may be expressed in the deformed reference

frame (about the elastic axis) as

(�Lw)C =

 �V 2

6a
(Cl cos�+ Cd sin�) (5.101)

(�Lv)C =

 �V 2

6a
(Cl sin�� Cd cos�) (5.102)

(�Lu)C =

 �V 2

6a
(�Cd sin�) (5.103)

( �M�)C =

 �V 2

6a
(
c

R
Cm)� ed(�Lw)C (5.104)

The following approximations are valid in the deformed reference frame:

sin� ' � ' �UP
UT

(5.105)

cos� ' 1 (5.106)

�V ' UT (5.107)

sin� ' UR

UT
(5.108)

The approximations of Eqns. 5.105-5.108 and the expressions for the aerodynamic

coe�cients in Eqns. 5.97-5.99 are substituted into the expressions for rotor forces

from Eqns. 5.101-5.104:

(�Lw)C =



6a
(c0UT

2 � (c1 + d0)UTUP + d1 jUP j UP ) (5.109)
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(�Lv)C =



6a
(�d0UT 2 � (c0UP � d1 jUP j)UT + (c1 � d2)UP

2) (5.110)

(�Lu)C =



6a
(�d0URUT ) (5.111)

( �M�)C =



6a

c

R
(f0(UT

2 + UP
2)� f1UTUP )� ed(�Lw)C (5.112)

The aerodynamic forces of the deformed frame may be transformed into the unde-

formed system via the transformation matrices de�ned previously in this Chapter8>>>>><
>>>>>:

(LAu )C

(LAv )C

(LAw)C

9>>>>>=
>>>>>;
= [Tud]

8>>>>><
>>>>>:

(�Lu)C

(�Lv)C

(�Lw)C

9>>>>>=
>>>>>;

(5:113)

(MA
� )C = ( �M�)C (5:114)

These equations for the circulatory lift and pitching moments can be modi�ed to

account for reverse 
ow and Mach e�ects as described in the following sections.

5.2.1 Reverse Flow

In helicopter mode at high forward 
ight velocities it is possible for the inboard

blade section to experience reverse 
ow. This occurs when the forward 
ight veloc-

ity exceeds the local rotational velocity. When this occurs, the aerodynamic center

of a typical airfoil shifts from approximately the quarter chord to approximately

the three-quarter chord position. More exactly, the velocity terms derived in the

previous sections may be modi�ed by the following equations if UT < 0:

ed
R = ed +

c

2R
(5.115)

�r
R = �edR (5.116)

where the superscript R indicates the reverse 
ow value.

5.2.2 Mach Number Perturbations

The blade forces are modi�ed by the local Mach number as well as the angle of

attack. Perturbations in the local Mach number and angle of attack must be
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taken into account for an accurate stability solution. The perturbation of the lift

coe�cient may be written as

�Cl =
@Cl

@�
�� +

@Cl

@M
�M (5:117)

The perturbations of angle of attack and Mach number are given by

� = �UP
UT

(5.118)

�� = �UP �UT � UT �UP

UT
2 (5.119)

M =
Mtip

Vtip
V =Mtip

UT


R
(5.120)

�M = Mtip

�UT


R
(5.121)

Assuming the Prandtl-Glauert modi�cation of Eqn. 5.100 applies, the derivatives

of the lift coe�cients are given by

@Cl

@�
=

c1 jM=0p
1�M2

(5.122)

@Cl

@M
= �1

2

@Cl

@�
(1�M2)� (5.123)

These equations give additional terms to the lift forces so that the new forces are

given by

(�Lw)C =



6a
(c0UT

2 � (c1 + d0)UTUP + d1 jUP j UP

+c2MtipUT (UT
2 + UP

2)) (5.124)

(�Lv)C =



6a
(�d0UT 2 � (c0UP � d1 jUP j)UT + (c1 � d2)UP

2)

�c2MtipUP (UT
2 + UP

2)) (5.125)

(�Lu)C =



6a
(�d0URUT ) (5.126)

( �M�)C =



6a

c

R
(f0(UT

2 + UP
2)� f1UTUP )� ed(�Lw)C (5.127)

where the additional perturbation terms contain c2 and

c2 = �1

2
�
p
1�M2 c1 jM=0 (5:128)
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The variation of the lift coe�cient with respect to Mach number is needed, and

can be obtained either from experimental data or from analytical relations. The

experimental data are generally available as part of the typical 2-D airfoil data in

the form of lift coe�cient as a function of Mach number. The applicable value of

@Cl
@M

can be calculated from this data using �nite di�erence techniques.

5.2.3 Noncirculatory Airloads

The noncirculatory contribution to rotor blade forces, arising from pitch and plunge

motions of the local airfoil section, are derived in this section. For a basic airfoil

undergoing pitch and plunge motion in the presence of an oncoming headwind, the

noncirculatory lift and moment forces are given by [87]

LNC = ��b2(�h� ahb��) + ��b2U _� (5.129)

= L2 + L3 (5.130)

MNC = ahbL2 � (
1

2
� ah)bL3 �

��b4

8
�� (5.131)

For the airfoil section of a general rotor, including the tiltrotor, the following

de�nitions apply and de�ne the forces about the elastic axis

U = 
R(x+ � sin cos�p) (5.132)

ahb = ed +
c

4
(5.133)

�h = � �w (5.134)

�� = ��1 (5.135)

_� = _�1 (5.136)

b =
c

2
(5.137)

The noncirculatory airloads act on in the undeformed blade reference frame. Sub-

stitution of the above Eqns. 5.132-5.137 into Eqns. 5.129-5.131 gives the noncircu-
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latory airload contributions as

(LAw)NC =
1

2
��c2(� �w + (

c

4
+ ed)��1 + 
R(x+ � sin cos�p) _�1) (5.138)

(MA
� )NC =

1

4
��c2((

c

4
+ ed) �w � (

c

4
+ ed)

2��1 � 
R(
c

2
+ ed)(x+ � sin cos�p) _�1

�c
2��1

32
) (5.139)

The nondimensional form of these equations, as required to add with the nondi-

mensional circulatory airloads derived previously, are obtained by dividing the lift

by m0

2R and the moment by m0


2R2, yielding

(LAw)NC =

� c

R

12a
(� �w

R
+ (

c

4R
+
ed

R
)��1 + (x+ � sin cos�p) _�1) (5.140)

(MA
� )NC =


� c
R

12a
(
c

4R
+
ed

R
(
�w

R
� ��1)�

c

2R
+
ed

R
(x+ � sin cos�p) _�1

� c2��1

32R2
) (5.141)

The total airloads in the undeformed blade reference frame are then given by

LAu = (LAu )C (5.142)

LAv = (LAv )C (5.143)

LAw = (LAw)C + (LAw)NC (5.144)

MA
� = (MA

� )C + (MA
� )NC (5.145)

5.3 Finite Element Discretization of Work

All the work done in the system is a result of the aerodynamic forces of the rotor

system. Although the airloads originate at the blades, net rotor forces are de-

veloped which are dependent on the blade, gimbal, and hub motion, resulting in

contributions to the mass, damping, and sti�ness system matrices. As mentioned

previously, the gimbal degrees of freedom are for convenience considered part of the

hub motion since they too are de�ned in a nonrotating frame. The �nite element
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formulation for the work done by the hub and rotor system is then written as

�W =

2
4 NbX
m=1

�Wb

3
5+ �Wh (5:146)

where �Wb represents the work performed by perturbations of the blade degrees of

freedom and �Wh represents work performed by perturbations of the hub degrees

of freedom. Work is represented mathematically as

�Wb =
Z R

0
(LAu �u+ LAv �v + LAw�w +MA

� ��)dx (5:147)

LAu , L
A
v , L

A
w, and M

A
� are the distributed aerodynamic forces acting in the rotating

blade reference frame. Similarly, the work done on the hub is expressed as

�Wh = Fxh�xh + Fyh�yh + Fzh�zh +M�h��h +M�h��h +M�h��h

+M�GC��GCM�GS��GS (5.148)

where each force and moment is the net load acting on the associated hub degree

of freedom. For the present formulation it is convenient to write these net forces

and moments as the sum of a set of distributed forces and moments acting along

the blade.

Fxh =
NbX
m=1

Z R

0
FA
xh
dx (5.149)

Fyh =
NbX
m=1

Z R

0
FA
yh
dx (5.150)

Fzh =
NbX
m=1

Z R

0
FA
zh
dx (5.151)

M�h =
NbX
m=1

Z R

0
MA

�h
dx (5.152)

M�h =
NbX
m=1

Z R

0
MA

�h
dx (5.153)

M�h =
NbX
m=1

Z R

0
MA

�h
dx (5.154)

M�GC =
NbX
m=1

Z R

0
MA

�GC
dx (5.155)
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M�GS =
NbX
m=1

Z R

0
MA

�GS
dx (5.156)

Each of the distributed loads is designated by a superscript A to di�erentiate

it from the other loads. The distributed aerodynamic blade loads LAu , L
A
v , L

A
w,

and MA
� are transformed into the reference frame of the associated hub degree of

freedom. This transformation is given by

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

FA
xh

FA
yh

FA
zh

MA
�h

MA
�h

MA
�h

MA
�GC

MA
�GS

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

= TFL

8>>>>>>>>><
>>>>>>>>>:

LAu

LAv

LAw

MA
�

9>>>>>>>>>=
>>>>>>>>>;

(5:157)

The transformation TFL is not part of the regular transformation sequence intro-

duced in the beginning of this chapter, but it is derived in the following section.

Also, the present TFL matrix is di�erent from that associated with the original

UMARC formulation because of the three additional hub forces: MA
�h
;MA

�GC
; and

MA
�GS

.

5.3.1 Derivation of the TFL Matrix

The transformation of the blade airloads into the nonrotating frames is described

in this section. Six of the eight required force components, FA
xh
, FA

yh
, FA

zh
, MA

�h
,

MA
�h
, andMA

�h
are de�ned in the inertial frame while the remaining two, MA

�GC
and

MA
�GS

, are de�ned in the hub system.
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The three directional forces are transformed into the inertial frame by

8>>>>><
>>>>>:

FA
xh

FA
yh

FA
zh

9>>>>>=
>>>>>;
= Tiu

8>>>>><
>>>>>:

LAu

LAv

LAw

9>>>>>=
>>>>>;

(5:158)

which, after application of the ordering scheme, gives terms up to second order.

There are many more second-order terms in the present formulation than in the

UMARC formulations because the ordering scheme of the present formulation as-

sumes that the fuselage degrees of freedom are of O(�) rather than O(�
3
2 ). There

are enough additional second-order terms that it is impractical to list them all.

Only the �rst-order terms are listed:

FA
xh

= �LAw�hcos�p + LAu cos�p cos �

LAw�pcos�p cos � LAw�GCcos�p cos
2 � LAwsin�p �

LAu�psin�p � LAu�hcos sin�p � LAu�GCcos sin�p +

�LAv cos�p sin � LAw�GScos�p cos sin + LAv �hsin�p sin �

LAu�GSsin�p sin � LAv cos �h � LAu sin �h (5.159)

FA
yh

= LAv cos + LAwcos�p �h + LAu cos �hsin�p +

LAu sin � LAw�psin � LAw�GCcos sin �

LAv �hsin�p sin � LAw�GS sin
2 +

LAu cos�p cos �h � LAwsin�p �h � LAv cos�p sin �h (5.160)

FA
zh

= LAwcos�p + LAu�pcos�p + LAu�hcos�p cos +

LAu�GCcos�p cos � LAv cos �h � LAw�hsin�p +

LAu cos sin�p � LAw�pcos sin�p �

LAw�GC cos
2 sin�p � LAv �hcos�p sin +
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LAu�GScos�p sin � LAu�hsin �

LAv sin�p sin � LAw�GScos sin�p sin (5.161)

The next transformation involves the inertial frame moments which have contri-

butions from both the blade moment and the blade forces.8>>>>><
>>>>>:

�MA
�h

�MA
�h

MA
�h

9>>>>>=
>>>>>;
= Tid

8>>>>><
>>>>>:

�MA
�

0

0

9>>>>>=
>>>>>;
+ riu x fLAu Îu + LAv Ĵu + LAwK̂ug (5:162)

where riu is the position vector de�ned from the origin of the inertial reference

frame to an arbitrary point on the blade elastic axis in the undeformed frame.

Note the negative signs on MA
�h

and MA
�h

indicating that these moments are in

the opposite direction of the normal right-hand rule convention for orthogonal

transformations. The position vector is de�ned as

riu = f0; 0; hg

8>>>>><
>>>>>:

Îw

Ĵw

K̂w

9>>>>>=
>>>>>;
+ fx+ u; v; wg

8>>>>><
>>>>>:

Îu

Ĵu

K̂u

9>>>>>=
>>>>>;

(5:163)

which may be written in the inertial frame as

riu = (f0; 0; hg[Twi] + fx+ u; v; wg[Tui])

8>>>>><
>>>>>:

Îi

Ĵi

K̂i

9>>>>>=
>>>>>;

(5:164)

After carrying out the cross product of Eqn. 5.162 and application of the ordering

scheme, the inertial frame aerodynamic moments are listed up to �rst order as

�MA
�h

= �MA
� �hcos sin�p + �MA

� �GCcos sin�p �

LAv �hcos hsin�p � 2LAw�GCcos�p cos hsin +

�MA
� �GSsin�p sin � LAu�hhsin�p sin �

2LAw�GScos�p hsin 
2 + LAv sin�p u�
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LAwcos�p sin u� LAwcos�p cos v � LAu sin�p v +

�MA
� cos�p sin v

0 + LAv cos�p cos w +

LAu cos�p sin w + �MA
� sin�p w

0 + LAv �hcos�p x+

LAv �GCcos�p cos
2 x� LAu�GCcos�p cos sin x+

LAw�hsin�p sin x� LAu�GScos�p sin
2 x+ LAu cos h�h +

�MA
� sin �h � LAv hsin �h � LAwcos x�h +

LAv �GScos�p cos sin x (5.165)

�MA
�h

= 2LAw�GCcos
2 h� �MA

� cos �hsin�p +

LAv cos h�hsin�p + 2LAw�GScos hsin +

LAuh�hsin�p sin + LAwcos u� LAwsin v �
�MA
� cos v

0 � LAu cos w + LAv sin w +

LAu�GCcos
2 x� LAv cos�p �hx+

LAv �GCcos sin x+ LAu�GScos sin x�

LAw�hsin�p sin x+ LAv �GSsin
2 x�

�MA
� cos�p cos �h + LAv cos�p cos h�h +

LAu cos�p hsin �h + LAv sin�p x�h �

LAwcos�p sin x�h (5.166)

MA
�h

= �MA
� �hcos�p cos +

�MA
� �GCcos�p cos � LAv �hcos�p cos h�

LAu cos h�h +
�MA
� �GScos�p sin �

LAu�hcos�p hsin � �MA
� �hsin + LAv h�hsin +

2LAw�GCcos hsin�p sin +

2LAw�GShsin�p sin
2 + LAv cos�p u+
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LAwsin�p sin u� LAu cos�p v + LAwcos sin�p v �
�MA
� sin�p sin v

0 � LAv cos sin�p w �

LAu sin�p sin w + �MA
� cos�p w

0 + LAwcos �hx�

LAv �hsin�p x� LAv �GCcos
2 sin�p x+

LAw�hcos�p sin x+ LAu�GCcos sin�p sin x�

LAv �GScos sin�p sin x+ LAu�GSsin�p sin
2 x (5.167)

In similar fashion, the gimbal moments are given by

8>>>>><
>>>>>:

MA
�GS

�MA
�GC

MA
�h

9>>>>>=
>>>>>;
= Thd

8>>>>><
>>>>>:

�MA
�

0

0

9>>>>>=
>>>>>;
+ rhu x fLAu Îu + LAv Ĵu + LAwK̂ug (5:168)

where only the moment �MA
�GC

is a negative moment in the transformation sense.

The third moment is a repeat of the previous torque moment derived in Eqn. 5.165,

and is simply used as a place-holder and check on the previous work. The position

vector is now de�ned as

rhu = (fx+ u; v; wg[Tuh])

8>>>>><
>>>>>:

Îh

Ĵh

K̂h

9>>>>>=
>>>>>;

(5:169)

and after substituting this expression into Eqn. 5.168, carrying out the cross prod-

uct, and applying the ordering scheme, the gimbal moments are listed up to �rst

order as

MA
�GS

= LAwsin u+ LAwcos v �
�MA
� sin v

0 � LAv cos w �

LAu sin w � LAv �GCcos
2 x+

LAu�GCcos sin x� LAv �GScos sin x+

LAu�GSsin
2 x (5.170)
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�MA
�GC

= LAwcos u� LAwsin v �
�MA
� cos v

0 � LAu cos w +

LAv sin w + LAu�GCcos
2 x+

LAv �GCcos sin x+ LAu�GScos sin x+

LAv �GSsin
2 x (5.171)

Taking the coe�cients of LAu , L
A
v ,L

A
w,and

�MA
� from Eqns. 5.159-5.161, Eqns. 5.165-

5.167, and Eqns. 5.170-5.171 gives the transformation matrix as

TFL = (TFL)0 + (TFL)q + (TFL)xh + (TFL)q2 + (TFL)qxh + (TFL)x2
h

(5:172)

where the subscript 0 indicates the constant terms, subscripts q and xh indicate

linear terms associated with the blade and hub degrees of freedom, respectively,

and q2, qxh, and x2h indicate terms nonlinear in the blade and hub degrees of

freedom. The nonlinear parts of the TFL matrix did not exist in past UMARC

formulations. Again, the nonlinear parts of TFL contains numerous of terms with

the present ordering scheme. It is not practical to show these terms considering

the small contributions they have on the system, but these terms have been in-

cluded in the analysis associated with the present theory. Errors associated with

coding these terms by hand are avoided by deriving the equations using symbolic

manipulation software in which the equations may be written in FORTRAN form

and pasted directly into the �les comprising the analysis. The constant and linear

contributions to the TFL matrix are listed as follows:

(TFL)0 =
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2
666666666666664

cos�p cos � �psin�p �cos�p sin ��pcos�p cos � sin�p 0

sin cos ��psin 0

�pcos�p + cos sin�p �sin�p sin cos�p � �pcos sin�p 0

�cos h sin (h+ x�p) cos (h�p + x) �sin 

cos�p hsin cos�p cos (h+ x�p) + xsin�p �cos�p sin (x+ h�p) �psin�p � cos�p cos 

�hsin�p sin �cos sin�p (h+ x�p) + xcos�p sin�p sin (x+ h�p) �pcos�p + cos sin�p

0 x�psin xcos �sin 

0 �x�pcos xsin cos 

3
777777777777775

(TFL)q =

2
666666666666664

0 0 0 0

0 0 0 0

0 0 0 0

�cos w sin w cos u� sin v �cos v0

�vsin�p + wcos�p sin usin�p + wcos�p cos �ucos�p sin � vcos�p cos v0cos�p sin + w0sin�p

�vcos�p � wsin�p sin ucos�p � wcos sin�p usin�p sin + vcos sin�p �v0sin�p sin + w0cos�p

�wcos sin w cos u� sin v �cos v0

�sin w �cos w sin u+ cos v �sin v0

3
777777777777775

(TFL)xh
=

2
6666666664

�sin�p (�hcos + �GCcos + �GSsin )� sin �h �cos (�GSsin�p + �h) + sin sin�p (�h + �GC )

cos (�hsin�p + cos�p �h) �sin (�hsin�p + cos�p �h)

cos�p cos (�h + �GC ) + sin (�GScos�p � �h) �GScos�p cos � cos �h � cos�p sin (�h + �GC )

hsin (�hsin�p + cos�p �h) hcos �hsin�p + x�GS � xcos�p �h + hcos�p cos �h + xsin�p �h

h(cos �h � �hsin�p sin ) �h(�hcos sin�p + xcos�p ) + x�GCcos�p � hsin �h

�h(cos �h + �hcos�p sin ) h(�hsin � �hcos�p cos )� xsin�p (�h � �GC )

0 x�GS

0 �x�GC

��hcos�p � �GCcos�p 0

��GS + cos�p �h � sin�p �h 0

��hsin�p � �GC sin�p 0

h�GC�xsin (�hsin�p +cos�p �h) �cos (�hsin�p +cos�p �h)

�h�GScos�p �xcos (�GSsin�p +�h)+xsin (�hsin�p +�GC sin�p ) cos (�hsin�p +�GC sin�p )+sin (�GSsin�p +�h)

h�GSsin�p �xcos (�GScos�p +�h)+xsin (�hcos�p +�GCcos�p ) cos (�hcos�p +�GCcos�p )+sin (�GScos�p ��h)

0 0

0 0

3
7777777775

5.3.2 Discretization of the Blade Equations

As previously discussed, the contributions of work are divided into work done on

the blade and work done on the hub. The work done on the blade results in the

blade equations which also have hub motion contributions, and the work done on
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the hub results in the hub equations which also have blade motion contributions.

This section will address the blade-blade and blade-hub equations which result

from the variation of work done on the blade. The nondimensional form of the

work is

�Wb =



6

Z R

0
�ûT L̂Adr (5:173)

where

�ûT = [u v w �]T (5.174)

L̂A = [LAu L
A
v L

A
w M

A
� ]

T (5.175)

The aerodynamic force vector, L̂A, can be expressed as a sum of constant, linear,

and nonlinear contributions of the blade and hub motion. This is written as

L̂A = (L̂A)0 + (L̂A)q + (L̂A)xh + (L̂A)q2 + (L̂A)qxh + (L̂A)x2
h

(5:176)

where 0 refers to the constant terms, q to the blade discretized displacement vector,

and xh to the hub displacement vector. The displacement vector, û, may be

discretized in terms of the spatial shape functions matrix, [Hs], and the blade

discrete degrees of freedom vector, q̂ as

û = [Hs] q̂ (5.177)

û0 = [H 0

s] q̂ (5.178)

_̂u = [Hs] _̂q (5.179)

The shape function matrix is de�ned as

[H] =

2
6666666664

Hu 0 0 0

0 Hb 0 0

0 0 Hb 0

0 0 0 H�

3
7777777775

(5:180)
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where the shape functions Hu, Hb, and H� are the same as those discussed in

Chapter 4. The discrete degrees of freedom are de�ned as

q̂ = [u1 u2 u3 u4 v1 v
0

1 v2 v
0

2 w1 w
0

1 w2 w
0

2 �1 �2 �3] (5:181)

and the vector of fuselage displacements is de�ned as

x̂h = [xh yh zh �h �h �h �GC �GS] (5:182)

The linear terms, (L̂A)q and (L̂A)xh , of the aerodynamic force vector may written

as a sum of coe�cient matrices such that

(L̂A)q + (L̂A)xh = [Au]û+ [Au0 ]û
0 + [A _u] _̂u

+[A�u]�̂u+ [Axh ]x̂h + [A _xh ] _̂xh (5.183)

Substitution of Eqns. 5.177-5.183 into the expression for virtual work Eqn. 5.173

yields the element blade-blade and blade-hub mass, damping, and sti�ness matrices

and load vectors.

�Wb = �q̂T ([MA
bb]�̂q + [CA

bb] _̂q + [KA
bb]q̂ + [CA

bh] _̂xh + [KA
bh]x̂h

+[QA
b ]0 + [QA

b ]q2 + [QA
b ]qxh + [QA

b ]x2h) (5.184)

where the system matrices are de�ned as

h
MA

bb

i
=




6
l

Z 1

0
[Hs]

T [A�u][Hs] ds (5.185)

h
CA
bb

i
=




6
l

Z 1

0
[Hs]

T [A _u][Hs] ds (5.186)

h
KA
bb

i
=




6
l

Z 1

0
([Hs]

T [Au][Hs] + [H 0

s]
T [Au0 ][H

0

s]) ds (5.187)

h
CA
bh

i
=




6
l

Z 1

0
[Hs]

T [A _xh ] ds (5.188)

h
KA
bh

i
=




6
l

Z 1

0
[Hs]

T [Axh ] ds (5.189)

h
QA
b

i
0

=



6
l

Z 1

0
[Hs]

T [LA]0 ds (5.190)

h
QA
b

i
q2

=



6
l

Z 1

0
[Hs]

T [LA]q2 ds (5.191)
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h
QA
b

i
qxh

=



6
l

Z 1

0
[Hs]

T [LA]qxh ds (5.192)

h
QA
b

i
x2
h

=



6
l

Z 1

0
[Hs]

T [LA]x2
h
ds (5.193)

In the above set of equations, 
 is the Lock number and l is the nondimensional

element length. The subscripts bb refer to blade-blade matrices while the subscripts

bh refer to the blade-hub matrices. The constant load vector [QA
b ]0 is used in the

blade response analysis to determine the de
ected trim position of the blade. The

nonlinear load vectors [QA
b ]q2 , [Q

A
b ]qxh , and [Q

A
b ]x2h are linearized about the de
ected

trim position and can also contribute to the sti�ness and damping matrices.

5.3.3 Discretization of the Hub Equations

This section will derive the hub-blade and hub-hub equations which result from

the variation of work done by the blade forces on the hub. The work performed

on the hub was given in Eqn. 5.148 as

�Wh = Fxh�xh + Fyh�yh + Fzh�zh +M�h��h +M�h��h +M�h��h

+M�GC��GC +M�GS��GS

which after substitution of Eqns. 5.149-5.156 may be written as

�Wh =
NbX
m=1

Z R

0
(FA

xh
�xh + FA

yh
�yh + FA

zh
�zh +MA

�h
��h +MA

�h
��h +MA

�h
��h

+MA
�GC

��GCM
A
�GS

��GS) dx (5.194)

=
NbX
m=1

Z R

0
�x̂Th F̂

A
h dr (5.195)

where

x̂h = [�xh �yh �zh ��h ��h ��h ��GC ��GS]
T (5.196)

F̂A
h = [FA

xh
FA
yh
FA
zh
MA

�h
MA

�h
MA

�h
MA

�GC
MA

�GS
]T (5.197)

The transformation of the aerodynamic loads from the blade to the hub is then

given by

F̂A
h = [TFL]L̂

A (5:198)

207



with [TFL] de�ned by Eqn. 5.172. To determine the linear and nonlinear contri-

butions to the system mass, damping, and sti�ness matrices, and the constant

and nonlinear contributions to the system load vector, the hub aerodynamic force

vector F̂A
h is divided into several parts as

F̂A
h = (F̂A

h )0 + (F̂A
h )q + (F̂A

h )xh + (F̂A
h )q2 + (F̂A

h )qxh + (F̂A
h )x2h (5:199)

and by using the TFL transformation matrix, each part is de�ned as

(F̂A
h )0 = (L̂A)0(TFL)0 (5.200)

(F̂A
h )q = (L̂A)0(TFL)q + (L̂A)q(TFL)0 (5.201)

(F̂A
h )xh = (L̂A)0(TFL)xh + (L̂A)xh(TFL)0 (5.202)

(F̂A
h )q2 = (L̂A)0(TFL)q2 + (L̂A)q(TFL)q + (L̂A)q2(TFL)0 (5.203)

(F̂A
h )qxh = (L̂A)q(TFL)xh + (L̂A)xh(TFL)q (5.204)

(F̂A
h )x2h = (L̂A)0(TFL)x2

h
+ (L̂A)xh(TFL)xh + (L̂A)x2

h
(TFL)0 (5.205)

Based on the above equations, the linear contributions to the force vector may be

written as

(F̂A
h )L = (L̂A)0(TFL)q + (L̂A)q(TFL)0 + (L̂A)0(TFL)xh + (L̂A)xh(TFL)0 (5:206)

To arrive at the linear contribution to the damping and sti�ness matrices, the linear

transformation contributions need to be written as coe�cients of displacements.

Let

(L̂A)0(TFL)q = (TFL)
u
0 û+ (TFL)

u0

0 û
0 (5.207)

(L̂A)0(TFL)xh = (TFL)
xh
0 x̂h (5.208)

Recalling that the linear blade lift terms may be written as coe�cients of displace-

ments as given by Eqn. 5.183, the linear force vector is then given by

(F̂A
h )L = (TFL)

u
0 û+ (TFL)

u0

0 û
0

+(TFL)0([Au]û+ [Au0 ]û
0 + [A _u] _̂u+ [A�u]�̂u)

+(TFL)
xh
0 x̂h + (TFL)0([Axh ]x̂h + [A _xh ] _̂xh) (5.209)
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Substitution of Eqns. 5.177-5.183 into the expression for the hub virtual work

(Eqn. 5.195) yields the element hub-blade and hub-hub damping and sti�ness

matrices and load vectors.

�Wh =
NbX
m=1

�x̂Th ([C
A
hb] _̂q + [KA

hb]q̂ + [CA
hh] _̂xh + [KA

hh] _xh

+[QA
h ]0 + [QA

h ]q2 + [QA
h ]qxh + [QA

h ]x2h) (5.210)

where the system matrices are de�ned as

h
MA

hb

i
=




6
l

Z 1

0
(TFL)0[A�u][Hs] ds (5.211)

h
CA
hb

i
=




6
l

Z 1

0
(TFL)0[A _u][Hs] ds (5.212)

h
KA
hb

i
=




6
l

Z 1

0
(TFL)

u
0 [Hs] + (TFL)

u0

0 [H
0

s]

+((TFL)0[Au][Hs] + (TFL)0[Au0 ][H
0

s]) ds (5.213)h
CA
hh

i
=




6
l

Z 1

0
(TFL)0[A _xh ] ds (5.214)

h
KA
hh

i
=




6
l

Z 1

0
(TFL)

xh
0 + (TFL)0[Axh ] ds (5.215)

h
QA
h

i
0

=



6
l

Z 1

0
(FA

h )0 ds (5.216)

h
QA
h

i
q2

=



6
l

Z 1

0
(FA

h )q2 ds (5.217)

h
QA
h

i
qxh

=



6
l

Z 1

0
(FA

h )qxh ds (5.218)

h
QA
h

i
x2
h

=



6
l

Z 1

0
(FA

h )x2h ds (5.219)

5.3.4 Nonlinear Force Contributions

Contributions to the mass, damping, and sti�ness matrices are obtained from

the nonlinear force vectors de�ned in Eqns. 5.190-5.193 for the blade and in

Eqns. 5.216-5.219 for the hub. The procedure described here for obtaining the

nonlinear contributions is the same as that used in the UMARC formulations,

only the expanded displacement vector for the hub is used and there are addi-

tional nonlinear components of the force transformation matrix TFL. The force

209



vector Q is written for the ith element as a sum of constant and nonlinear parts

as

[Q]i = [Q0]i + [QNL]i (5:220)

The nonlinear element load vector is linearized about the de
ected trim position

using a �rst order Taylor series expansion. For each nonlinear element load vector

[QNL]i = ([QNL] j0 +
@[QNL]

@q̂
q̂ +

@[QNL]

@ _̂q
_̂q +

@[QNL]

@x̂h
x̂h +

@[QNL]

@ _̂xh
_̂xh)i (5:221)

Similar to Eqn. 5.183, the nonlinear contributions of the blade aerodynamic

forces may be written in coe�cient form as

[LA]nl = [LA]q2 + [LA]qxh + [LA]x2
h

= [Au]nlû+ [Au0 ]nlû
0 + [A _u]nl _̂u+

[Axh ]nlx̂h + [A _xh ]nl _̂xh (5.222)

where after linearization about the de
ected trim position, the nonlinear A matri-

ces are de�ned as:

[Au]nl =

"
@

@u
[LA]nl

@

@v
[LA]nl

@

@w
[LA]nl

@

@�
[LA]nl

#
(5.223)

[Au0 ]nl =

"
@

@u0
[LA]nl

@

@v0
[LA]nl

@

@w0

[LA]nl
@

@�0
[LA]nl

#
(5.224)

[Au]nl =

"
@

@ _u
[LA]nl

@

@ _v
[LA]nl

@

@ _w
[LA]nl

@

@ _�
[LA]nl

#
(5.225)

[Axh ]nl =
@

@x̂h
[LA]nl (5.226)

[A _xh ]nl =
@

@ _̂xh
[LA]nl (5.227)

After substitution into the blade work equation, the nonlinear blade-blade and

blade-hub damping and sti�ness matrices are given by:

h
CA
bb

i
nl

= �

6
l

Z 1

0
[Hs]

T [A _u]nl[Hs] ds (5.228)

h
KA
bb

i
nl

= �

6
l

Z 1

0
([Hs]

T [Au]nl[Hs] + [H 0

s]
T [Au0 ]nl[H

0

s]) ds (5.229)
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h
CA
bh

i
nl

= �

6
l

Z 1

0
[Hs]

T [A _xh ]nl ds (5.230)

h
KA
bh

i
nl

= �

6
l

Z 1

0
[Hs]

T [Axh ]nl ds (5.231)

(5.232)

which can be added to the linear sti�ness matrices for stability analysis.

The nonlinear contributions to the hub equations is more di�cult because of

the involvement of the force transformation matrix TFL. The nonlinear forces on

the hub are written as:

(F̂A
h )nl = [TFL] [L

A]nl

= (F̂A
h )q2 + (F̂A

h )qxh + (F̂A
h )x2h (5.233)

After substitution of Eqns. 5.203-5.205 into the above expression, and linearizing

about the de
ected trim position, the nonlinear forces may be written in coe�cient

form as:

(F̂A
h )nl = [TFL]0([Au]nlû+ [Au0 ]nlû

0) + (Ahu)nlû+ [Ahu0 ]nlû
0 +

[TFL]0[A _u]nl _̂u+ [Ah_u]nl _̂u+

[TFL]0[Axh ]nlx̂h + [Ahxh ]nlx̂h +

[TFL]0[A _xh ]nl _̂xh + [Ah_xh ]nl _̂xh (5.234)

with the new hub-related nonlinear A matrices given by:

h
Ahu

i
nl

= (L̂A)0
@

@û
(TFL)q2 + (L̂A)q

@

@û
(TFL)q +

@

@û
(L̂A)q(TFL)q (5.235)

h
Ahu0

i
nl

= (L̂A)0
@

@û0
(TFL)q2 + (L̂A)q

@

@û0
(TFL)q +

@

@û0
(L̂A)q(TFL)q (5.236)

h
Ah_u

i
nl

= (L̂A)0
@

@ _̂u
(TFL)q2 + (L̂A)q

@

@ _̂u
(TFL)q +

@

@ _̂u
(L̂A)q(TFL)q (5.237)

h
Ahxh

i
nl

= (L̂A)0
@

@x̂h
(TFL)q2 + (L̂A)q

@

@x̂h
(TFL)q +

@

@x̂h
(L̂A)q(TFL)q(5.238)

h
Ah_xh

i
nl

= (L̂A)0
@

@ _̂xh
(TFL)q2 + (L̂A)q

@

@ _̂xh
(TFL)q +

@

@ _̂xh
(L̂A)q(TFL)q(5.239)
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Substitution of these terms into the appropriate energy expression for the hub gives

the nonlinear contributions to the hub-blade and hub-hub damping and sti�ness

matrices as:

h
CA
hb

i
nl

= �

6
l

Z 1

0
(TFL)0[A _u]nl[Hs] + [Ah_u]nl[Hs] ds (5.240)

h
KA
hb

i
nl

= �

6
l

Z 1

0
(TFL)0[Au]nl[Hs] + (TFL)0[Au0 ]nl[H

0

s]

+[Ahu]nl[Hs] + (TFL)0[A
h
u0 ]nl[H

0

s]) ds (5.241)h
CA
hh

i
nl

= �

6
l

Z 1

0
(TFL)0[A _xh ]nl + [Ah_xh ]nl ds (5.242)

h
KA
hh

i
nl

= �

6
l

Z 1

0
(TFL)0[Axh ]nl + [Ahxh ]nl ds (5.243)

(5.244)

5.4 Wing Aerodynamics

As is the case with the wing structural model, the wing aerodynamic model paral-

lels that of the blade. Only linear aerodynamics are considered for the wing, and

then only for inclusion in the stability analysis. For stability, the constant load

vector is not considered, so the wing aerodynamic contribution to the wing system

matrices is given by the linear blade-blade matrices with appropriate substitutions.

The substitutions begin with de�nition of the local velocity vectors. Here, the wing

acts the same as the blade when  = 90� and �p = 0�. Of course, the rotational

velocity and precone are zero for the wing. Also, the term �1 for the wing is the

sum of the wing incidence angle and the fuselage angle of attack. With these sub-

stitutions, the velocity components for the wing are given by: (Ur)w, (Ut)w, and

(Up)w which are de�ned as follows:

The radial component of velocity is given by

(Ur)w = (Rc)w + (Rl)w (5:245)
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with

(Rc)w = 0 (5.246)

(Rl)w = (Ru)w + (Rv)w + (Rv0)w + . . . + (R _�)w

(Ru)w = 0 (5.247)

(Rv)w = 0 (5.248)

(Rv0)w = � (5.249)

(Rw)w = 0 (5.250)

(Rw0)w = 0 (5.251)

(R _u)w = 1 (5.252)

(R _v)w = 0 (5.253)

(R _w)w = 0 (5.254)

(R _v0)w = 0 (5.255)

(R _w0)w = 0 (5.256)

(R�)w = 0 (5.257)

(R _�)w = 0 (5.258)

The tangential component of velocity is given by

(Ut)w = (Tc)w + (Tl)w (5:259)

with

(Tc)w = �cos�1 (5.260)

(Tl)w = (Tu)w + (Tv)w + (Tv0)w + . . . + (T _�)w

(Tu)w = cos�1 (5.261)
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(Tv)w = 0 (5.262)

(Tv0)w = 0 (5.263)

(Tw)w = 0 (5.264)

(Tw0)w = 0 (5.265)

(T _u)w = 0 (5.266)

(T _v)w = cos�1 (5.267)

(T _w)w = sin�1 (5.268)

(T _v0)w = 0 (5.269)

(T _w0)w = 0 (5.270)

(T�)w = ��sin�1 (5.271)

(T _�)w = 0 (5.272)

The perpendicular component of velocity is given by

(Up)w = (Pc)w + (Pl)w (5:273)

and

(Pc)w = �sin�1 (5.274)

(Pl)w = (Pu)w + (Pv)w + (Pv0)w + . . . + (P _�)w

(Pu)w = 0 (5.275)

(Pv)w = 0 (5.276)

(Pv0)w = 0 (5.277)

(Pw)w = 0 (5.278)

(Pw0)w = 0 (5.279)

(P _u)w = 0 (5.280)

(P _v)w = �sin�1 (5.281)
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(P _w)w = cos�1 (5.282)

(P _v0)w = 0 (5.283)

(P _w0)w = 0 (5.284)

(P�)w = �cos�1 (5.285)

(P _�)w = 0 (5.286)

These velocity components can then be used to form the aerodynamic con-

tributions to the wing mass, damping, and sti�ness element matrices using the

derivation provided in this chapter for the blade-blade equations. The corrections

provided in those sections for including Mach number perturbations and noncir-

culatory airloads are also applicable to the wing aerodynamic model.
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Chapter 6

Vehicle Trim and Blade

Response Analysis

Vehicle trim refers to an equilibrium of forces and moments on the aircraft, in-

cluding the rotor steady force contributions. The rotor system loads depend on

the blade response, so the determination of the airframe trim and blade response

is coupled together. Thus, the procedure is referred to as \coupled trim", and is

an important part of rotor analysis.

The present chapter is divided into three major parts: 1) formulation of the

vehicle equilibrium equations, 2) formulation and solution of the blade response

equations, and 3) discussion of the coupled trim procedure. While much of the

solution procedures discussed in the present chapter are similar to those used in

UMARC, there are some new requirements for the present tiltrotor formulation.

The major modi�cations for the present formulation are as follows: the de�nition

of new tiltrotor-related vehicle trim equations, the creation of a new rigid-blade

high-in
ow analysis for estimating initial controls, capability of recalculating the

Jacobian matrix in the coupled trim procedure, and estimation of elastic blade

twist in both the rigid-blade and elastic blade analyses.
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6.1 Vehicle Trim Equations

The vehicle trim equations consist of the de�nition of two vectors describing the

state of trim: the vehicle force residuals F̂ and the trim unknowns �̂ which will be

referred to as the control vector. The force residuals de�ne the equilibrium bal-

ance of the rotor hub forces and the airframe forces which are functions of the trim

unknowns and the blade response. The trim unknowns are the quantities to be

solved for in the coupled trim procedure. The lengths of these vectors are the same

and depend on the 
ight condition and associated assumptions which can be made

in regard to the force balance. For the tiltrotor model of the present formulation,

three trim options are o�ered, and are classi�ed as: free-
ight, wind tunnel, and

axisymmetric trim. General free-
ight trim considers equilibrium about a conve-

nient point in the vehicle and assumes symmetric level 
ight. This option includes

a balance of forces from the rotor, wing, horizontal tail, and the fuselage. Wind

tunnel trim for the tiltrotor con�guration assumes a cantilevered wing and rotor

model, and excludes consideration of the airframe (fuselage, wing, and horizontal

tail) forces. Axisymmetric trim is a highly simpli�ed scheme applicable to the

hover and axial 
ight cases in which only the rotor thrust balance is considered.

6.1.1 Free-Flight Trim

For the tiltrotor free-
ight trim scheme, symmetric level 
ight is assumed. This

implies that only one of the rotor systems need be considered and that the opposite

rotor is a mirror image of the one under consideration. Under this assumption,

the vehicle roll and yaw moments and the vehicle side forces balance by de�nition,

independent of the actual loads on the rotor, wing, horizontal tail, and fuselage.

The free-
ight trim may be used to solve the trim equations for any of the tiltrotor


ight modes: hover, helicopter forward 
ight, conversion mode, or high-speed axial


ight. However, simpli�ed trim schemes are available and may be desirable for
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ight conditions where a reduced set of unknowns can be used.

A side view of the free-
ight geometry is shown in Figure 6.1 (other views are

not necessary because of the assumption of symmetry). As shown, the steady

rotor thrust, drag, and pitch moment contribute to the aircraft equilibrium which

is established at a point in the fuselage which has the same x and z coordinates as

the pylon pivot point. Aerodynamic loads from the tail section, wing, and rotor

are also considered, and the wing and tail may each have incidence angles built-in

which are added to the angle of attack of the fuselage. Lateral and roll moments

on the aircraft are balanced by the assumed symmetry of the 
ight condition, but

to restrain 
apping to a minimum, lateral 
apping moment at the rotor itself (Mx,

not shown in �gure) must be zero. The forward component of thrust balances with

the aircraft and rotor drags while the wing lift and vertical component of rotor

thrust must balance with the vehicle weight. The rotor side force and rotor torque

balance due to symmetry. The force equilibrium is written in terms of a vector of

force residuals F̂ in which

F̂ = 0 (6:1)

when trim is complete. There are four force residuals for the tiltrotor symmetric

free-
ight trim which are given by

F1 = Df +Dw +Dt � (T sin�p �Hcos�p ) (6.2)

F2 = Lf + Lw + Lt + (T cos�p +Hsin�p )�W (6.3)

F3 = My + (My)f �W (zw sin�f + xw cos�f )�Dfzw +

Mw +Mt �Dt(zw � zt)� Lt(xt � xw) + hH (6.4)

F4 = Mx (6.5)

These equations are derived from the force and moment diagram illustrated in

Figure 6.1, and all quantities are in nondimensional form. F1 and F2 represent the

vertical and horizontal force residuals, respectively, F3 represents the longitudinal
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(pitch) moment residual, and F4 represents the lateral moment residual about the

rotor hub. T;H;Mx; and My are the rotor thrust, drag, roll moment, and pitch

moment, respectively. These forces are balanced by the lift, drag, and moments

(L, D, M) associated with the fuselage, wing, and horizontal tail (subscripts f , w,

and t), and by the vehicle weight, W . xt and xw indicate the longitudinal distance

between the fuselage center of gravity and the quarter chord position of the tail and

wing, respectively. Similarly, zt and zw indicate vertical height above the fuselage

center of gravity of the tail and wing, respectively. The fuselage forces appearing

in the residual equations are de�ned as follows:

Df =
�2

2


Nb

3�a

f

A
(6.6)

Dw =
�2

2


Nb

3�a
Sw(Cd)w (6.7)

Dt =
�2

2


Nb

3�a
St(Cd)t (6.8)

Lf =
�2

2


Nb

3�a
St(Cl)f (6.9)

Lw =
�2

2


Nb

3�a
Sw(Cl�)w(�f + (�0)w) (6.10)

Lt =
�2

2


Nb

3�a
St(Cl�)t(�f + (�0)t) (6.11)

(My)f =
�2

2


Nb

3�a
CMf

(6.12)

Mw =
�2

2


Nb

3�a
Sw(Cm)wcw (6.13)

Mt =
�2

2


Nb

3�a
St(Cm)tct (6.14)

and the rotor forces are calculated in the hub plane based on a �nite element in

time solution. In the above equations, 
 represents the Lock number, Nb is the

number of blades, a is the reference lift curve slope of the rotor blades, � is the

blade solidity, f=A is the fuselage 
at plate area, �0 is the incidence angle of the

wing or tail with respect to the fuselage (angle of attack when �f is zero), and

CMf
is the fuselage pitch moment coe�cient without the wing or horizontal tail

included.
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The unknown quantities to be determined in the coupled trim procedure are

given in vector form as

�̂T = [�f �75 �1c �1s] (6:15)

where �s is the fuselage angle of attack which is the same as the rotor shaft tilt

when the rotor pylon angle is at 0�. The remaining three controls govern the rotor

blade pitch as a function of azimuth, and can be written for any blade radial station

as

�(x;  ) = �75 + �x + �1ccos + �1ssin (6:16)

where �75 is the pitch angle de�ned at the 75% radial station (essentially the

collective pitch setting de�ned at .75R), �x is the di�erence in pitch between the

75% radial station and the radial station at x which is given by the built-in blade

twist (twist may be nonlinear), and �1c and �1s are the cyclic pitch angles.

6.1.2 Wind Tunnel Trim

For the tiltrotor con�guration, wind tunnel trim refers to a cantilevered wing and

rotor system. Here, there is no need to include fuselage, wing, or tail forces in the

force residual calculations. There is no fuselage angle of attack, and the pylon is set

at a steady value given by �P . The force residual equations for this con�guration

are greatly simpli�ed as compared to the free-
ight case, and are given by:

F1 = T � Ti (6.17)

F2 = My (6.18)

F3 = Mx (6.19)

F1 is the thrust residual which is the di�erence between the calculated thrust T

based on a current value of the collective pitch setting and the desired thrust level

Ti (an input parameter). F2 and F3 are the pitch and roll moment residuals at the

rotor hub. These residuals determine the level of cyclic pitch in the rotor system

220



which is nonzero when an antisymmetric 
ow condition exists (�P not at 0� or

90�).

The unknown quantities to be determined in the wind tunnel coupled trim

procedure are given in vector form as

�̂T = [�75 �1c �1s] (6:20)

where the fuselage angle of attack �f , has been dropped from the vector of un-

knowns as de�ned for the free-
ight case.

6.1.3 Axisymmetric Trim

Simpli�ed trim procedures are available for the two tiltrotor 
ight conditions in

which 
ow through the rotor is perfectly-symmetric (independent of azimuth sta-

tion), axisymmetric hover and high-speed axial 
ight. In the context of the ana-

lytical tiltrotor model, axisymmetric hover is a free-
ight condition which assumes

that the vehicle center of gravity aligns with the rotor thrust axis such that no

cyclic control is required to balance vehicle forces and moments. Axial 
ight is a

wind-tunnel trim case in which the pylon angle is set to 90� (airplane mode). Only

one force residual equation is required for these two cases as is given by:

F1 = T � Ti (6:21)

where T is the calculated thrust based on a current value of the collective and Ti

is the desired thrust level. Ti is an input parameter de�ned as the desired value

of thrust in the axial 
ight case and Ti = W in the hover case. There is only one

term in the corresponding vector of unknowns:

�̂T = [�75] (6:22)
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6.2 Blade Response Equations

An integral part of the coupled trim scheme is the solution of the steady blade

response, as this impacts the hub force calculations. The steady rotor response is

calculated for a �xed hub, so only the blade-related equations de�ned in Chapters 4

and 5 (hub and wing equations involved only in the stability analysis) are used,

and within these equations the hub motion terms are neglected such that:

_̂xh = 0 (6.23)

�̂xh = 0 (6.24)

For the tiltrotor con�guration, the hub displacements are not members of the

vector of unknown trim parameters so it may also be assumed that

x̂h = 0 (6:25)

in the calculation of the steady blade response. The blade response is then de�ned

by the solution of:

Z 2�

0
(�q̂Gb )

T ([MG
bb ]�̂q

G

b + [CG
bb] _̂q

G

b + [KG
bb]q̂

G
b � F̂G

b ) d = 0 (6:26)

where the blade-blade structural and aerodynamic element matrices de�ned in

Chapters 4 and 5 have been combined and assembled into respective global matrices

as indicated by the superscript G. The assembly process is described in more detail

in Chapter 7. For free 
ight trim, the blade force vector includes contributions of

the fuselage angle of attack.

To reduce computation time, the blade response equations are solved using

normal modes. The free vibration modes for the blade are calculated based on the

structural contributions to the global mass and sti�ness matrices:

[MG
bb ]

S �̂q
G

b + [KG
bb]

S q̂Gb = 0 (6:27)
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where the superscript S indicates contributions only from the structural model,

and the matrix terms are calculated based on �75 = 0. This system is solved using

standard eigenvalue techniques for a desired number of model degrees of freedom,

generally 6 to 8. All eigenvalues of this system are positive real numbers, and the

eigenvectors are real and orthogonal. The global displacements are related to the

new set of modal displacements as:

q̂Gb = [�]p̂b (6:28)

where [�] is the NG x m modal matrix, and NG is the number of blade global

degrees of freedom and m is the number of modes. After substitution of this

relationship into Eqn. 6.26, the modal response equations are expressed as:

Z 2�

0
(�p̂b)

T ([Mp
bb] �̂pb + [Cp

bb] _̂pb + [Kp
bb]p̂b � F̂

p
b ) d = 0 (6:29)

where

[Mp
bb] = [�]T

h
MG

bb

i
[�] (6.30)

[Cp
bb] = [�]T

h
CG
bb

i
[�] (6.31)

[Kp
bb] = [�]T

h
KG
bb

i
[�] (6.32)

[F p
b ] = [�]T

h
FG
b

i
(6.33)

de�nes the modal mass, damping, and sti�ness matrices.

6.2.1 Finite Element in Time

Solution of Eqn. 6.29 requires a numerical integration method such as Runge-Kutta

or �nite element in time. The procedure used in the present formulation is the

�nite element in time method, and is no di�erent than that procedure used in the

UMARC formulations. As a matter of completeness, however, some of the details

of the procedure are established in the present section.
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A temporal �nite element based on Hamilton's principle is used to discretize

the azimuthal dependence (periodic part) of the blade response equations. The

normal mode degrees of freedom pb are approximated with 5th order Lagrangian

C0-continuous polynomials (6 nodes per time element).

The damping and sti�ness matrices of the blade response equations contain

periodic terms, but the mass matrix does not. Application of the �nite element in

time procedure is then facilitated by an integration of the response equations by

parts. Eqn. 6.29 may be written as:

Z 2�

0

8><
>:
�p̂b

� _̂pb

9>=
>;
T 8><
>:
F̂
p
b � [C]pb _̂pb � [K]pb p̂b

[M ]
p

b _̂pb

9>=
>; d =

8><
>:
�p̂b

� _̂pb

9>=
>;
T 8><
>:

[M ]pb _̂pb

0

9>=
>;
�������
2�

0

(6:34)

where the right hand side of the equation is zero because periodicity for the system

is enforced such that

_̂p(2�) = _̂p(0) (6:35)

The response equations may then be written as

Z 2�

0
�ŷT [Q] d = 0 (6:36)

where

ŷ =

8><
>:
�p̂b

� _̂pb

9>=
>; (6:37)

and

[Q] =

8><
>:
F̂
p
b � [C]pb _̂pb � [K]pb p̂b

[M ]
p

b _̂pb

9>=
>; (6:38)

At this stage, the matrix [Q] is nonlinear since it contains F̂ p
b . Using a procedure

analogous to spatial discretization, the interval of one rotor revolution 2� is divided

into several time (azimuthal) elements as shown in Fig. 6.2. The blade response

equations are then expressed as a sum of the response over each time interval as:

NtX
i=1

Z  i+1

 i

�ŷTi [Q]i d = 0 (6:39)
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where Nt is the number of time elements used. The response may be linearized

using a �rst-order Taylor series expansion about a set of steady state values ŷ0

which represent the current blade response estimate. The linearized response is

written as:
NtX
i=1

Z  i+1

 i

�ŷTi ([Q(y0)]i + [Kt(ŷ0)]i�ŷi) d = 0 (6:40)

where

[Kt]i =

2
64

@FG
b

@p̂b
� [K]Gb

@FG
b

@ _̂pb
� [C]Gb

0 [M ]Gb

3
75 (6:41)

For the ith element, the time variation of the modal displacement vector can be

expressed in terms of the temporal shape functions and the temporal discrete

displacements as:

p̂b( ) = [Ht(s)]�̂ (6:42)

where s is the local time coordinate de�ned as:

s =
 �  i

 i+1 �  i
(6:43)

and  i+1 �  i is the time span of the ith element. The number of shape functions

in the matrix [H]t depends on the level of approximation, but generally the default

approximation used in the current formulation is 6 nodes per element which yields

a set of six 5th-order polynomials. This family of polynomials is derived in Ref. 79.

The response equations can then be written in terms of the discrete unknowns as:

NtX
i=1

Z  i+1

 i

��̂Ti [N ]t([Q]i + [Kt]i[N ]��̂i) d = 0 (6:44)

where

N =

8><
>:

[Ht( )]h
_Ht( )

i
9>=
>; (6:45)

After summation and assembly of the elements (which follows the same procedures

as that of the spatial elements) and conversion from a set of element degrees of
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freedom to a set of global degrees of freedom, the response equations may be

written as:

[Q]G + [K]Gt ��̂
G = 0 (6:46)

which is solved subject to the boundary conditions:

�̂(0) = �̂(2�) (6.47)

_̂�(0) = _̂�(2�) (6.48)

6.3 Coupled Trim Procedure

The coupled trim procedure used for the tiltrotor formulation is similar to that

used in UMARC, but a few modi�cations have been added. New segments of the

procedure are the di�erent initial controls and modi�cations to facilitate conver-

gence of blades with large twist deformations. For the initial controls estimate of a

tiltrotor con�guration, a new rigid-blade 
ap analysis is formulated which accounts

for high-in
ow, large steady pylon angles, large blade twist, and the airframe forces

(wing and horizontal tail) when free 
ight is considered. For the convergence of

blades with large twist, the coupled trim procedure is modi�ed so that a twist de-

formation estimate may be added to the initial controls estimate and the Jacobian

may be recalculated at given intervals in the procedure.

The basic procedure of the present coupled trim solution is shown in Fig. 6.3.

The objective is to balance the rotor and airframe forces, driving the force residual

equations to zero. It is advantageous to start the procedure with a good estimate of

the initial controls for two reasons: 1) the procedure involves nonlinear equations

and so it is possible to obtain an unrealistic or divergent solution 2) the procedure

is computationally intensive and the number of iterations needed to achieve the

converged solution depends on the closeness of the initial guess to the �nal solution.

Based on the initial controls, the blade response equations are solved yielding
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an initial set of rotor forces and the blade responses (velocity and displacement

associated with each discrete degree of freedom). A Jacobian matrix is formulated

to determine a new set of controls required to drive the force residual to zero. The

blade response and rotor forces associated with the new set of controls is then

calculated. This process continues until convergence of both the blade response

and vehicle force residuals is obtained. A new Jacobian is never recalculated during

the iteration cycle in previous versions of the UMARC analysis, but as shown the

Jacobian may be recalculated in the present formulation. The new procedure also

calls for interactive support of the user when large twist deformations are involved.

A divergent process may be encountered in such situations which requires restarting

of the analysis with an improved estimate of the elastic twist. This estimate may

be gained from observations of early coupled trim iterations.

6.3.1 Initial Controls Estimate

As mentioned previously, it is advantageous to start the coupled trim procedure

with a good estimate of the initial controls. A reasonably good approximation

of the initial controls (including fuselage angle of attack for free 
ight) may be

obtained with a rigid 
apping blade analysis. Although a rigid-blade analysis in-

cluding both 
ap and lag motions is formulated in Chapter 2, it assumes axial 
ight,

and is, therefore, not applicable to the general tiltrotor con�guration. A new rigid-

blade analysis is formulated based on a 
ap-only rigid-blade and lift-curve-slope

aerodynamics. Because this model is applicable for the general tiltrotor con�gu-

ration, including free-
ight conversion modes, the development is quite involved.

The formulation of the rigid-blade controls-estimate analysis is thus provided in

Appendix B.
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6.3.2 Blade Steady Periodic Response

The blade steady periodic response is obtained from solution of the global �nite

element in time matrices de�ned by Eqn. 6.46, with initial conditions de�ned by

Eqns. 6.47 and 6.48. These equations represent a time discretized nonlinear set

of algebraic equations which are solved iteratively using Newton's method. Recall

that the solution vector is written as a sum of steady and perturbations quantities

such that

�̂ = �̂0 +��̂ (6:49)

The steady global solution update for each iteration is thus given by

�̂Gi+1 = �̂Gi +��̂Gi (6:50)

where convergence is obtained when ��Gi � 0. In the coupled-trim procedure, this

iterative solution is coupled with the solution of the force residual equations such

that both the blade steady periodic response �̂G and blade control vector �̂ are

obtained simultaneously.

6.3.3 Computation of Blade and Hub Loads

Solution of the force residual equations requires the contribution of the hub loads

which come from conversion of the rotating blade loads into the �xed frame. The

rotating blade loads are calculated in the present formulation using a force sum-

mation method involving integration of the local blade inertial and aerodynamic

forces along the span. Aerodynamic contributions to the blade loads are de�ned

in Chapter 5. Intertial contributions to the blade loads are de�ned in UMARC

formulations and are listed in Ref. 79. Since the hub is �xed in the coupled trim

procedure, the inertial loads depend only on the deformation associated with the

blade itself so that the tiltrotor and helicopter equations are identical. The equa-

tions for the inertial contributions to the blade loads are nonlinear, and require
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knowledge of the blade displacements, velocities, and accelerations. The displace-

ment and velocity information are products of the �nite element in time solution.

The blade accelerations are calculated from rearrangement of Eqn. 6.26 as:

�̂q
G

b = [MG
bb ]

�1(F̂G
b � [CG

bb] _̂q
G

b � [KG
bb]q̂

G
b ) (6:51)

The inertial and aerodynamic contributions to each of the three force and

moment directions are summed as:

Lu = LAu + LIu (6.52)

Lv = LAv + LIv (6.53)

Lw = LAw + LIw (6.54)

Mu = MA
� +M I

� (6.55)

Mv = MA
� v

0 +M I
v (6.56)

Mw = MA
� w

0 +M I
w (6.57)

where the loads are de�ned in the undeformed blade system. The rotating blade

forces and moments at the root are then obtained by integration along the blade

span:

Fx =
Z R

0
Lu dr (6.58)

Fy =
Z R

0
Lv dr (6.59)

Fz =
Z R

0
Lw dr (6.60)

Mx =
Z R

0
(Mu + Lwv � Lvw) dr (6.61)

My =
Z R

0
(Mv � Lw(r + u) + Luw) dr (6.62)

Mz =
Z R

0
(Mw + Lv(r + u)� Luv) dr (6.63)

The �xed frame loads are de�ned in the hub plane, and are calculated using

the Fourier coordinate transformation as:

FH
x =

NbX
m=1

(Fm
x cos m � Fm

y sin m � �pF
m
z cos m) (6.64)
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FH
y =

NbX
m=1

(Fm
x sin m + Fm

y cos m � �pF
m
z sin m) (6.65)

FH
z =

NbX
m=1

(Fm
z + �pF

m
x ) (6.66)

MH
x =

NbX
m=1

(Mm
x cos m �Mm

y sin m � �pM
m
z cos m) (6.67)

MH
y =

NbX
m=1

(Mm
x sin m +Mm

y cos m � �pM
m
z sin m) (6.68)

MH
z =

NbX
m=1

(Mm
z + �pM

m
x ) (6.69)

where m designates the mth blade of Nb blades, F are the hub shear forces, and

M are the hub moments. The hub shear forces and moments may be periodic,

and are therefore expressed in terms of harmonics. Any periodic functions may be

expanded in a Fourier series as

f( ) = f0 +
1X
n=1

(fnc cosn + fns sinn ) (6:70)

where f0 is a steady term and n denotes the nth harmonic. Expansion of the hub

forces and moments in a Fourier series gives the steady hub force and moment

terms required for the force residual equations (T , H, Mx, and My while Y and Q

are also gained, but not required due to symmetry). The harmonic terms give the

vibratory loads of the system.

6.3.4 In
ow Update

Just as the de�nition of advance ratio is modi�ed for the tiltrotor con�guration to

exclude the angle of attack, so is the de�nition of the in
ow. Normally, the in
ow

has an induced-
ow component and a forward velocity component. The component

of in
ow due to forward 
ight velocity is accounted for in the present formulation

with sine and cosine terms in the equations of motion and aerodynamic force

calculations. The induced in
ow, �i, depends on the rotor thrust T (the zeroth
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harmonic of FH
z ), and is updated accordingly on each iteration of the coupled trim

procedure. Two in
ow models are available for the tiltrotor in
ow calculations,

but these do not include the interference of the wing or fuselage on the 
ow. The

simplest is a uniform induced in
ow distribution given by

�i = 1:15

s
CT

2
(6:71)

which is adequate for high speed axial 
ight where the thrust generation is fairly

uniform across the disk and the induced in
ow velocity is a very small (almost

insigni�cant) part of the total velocity through the rotor. A more complex model

developed by Gessow [91] is used for hover:

�i =
�(c1)i

16
(�1 +

s
1 +

32�x

�(c1)i
) (6:72)

where (c1)i is the local lift curve slope corrected for Mach and stall e�ects. This

model is important for tiltrotors because the blades generally are highly twisted

such that some part of the blade span is in
uenced by stall. In
ow distributions

for several blade linear twist distributions are compared in Fig. 6.4 which show

the large di�erences between uniform and nonuniform hover distribution models.

This plot also shows the e�ects of stall at high blade twists, as noted by the

increase in collective angle required to produce the desired thrust. Also, while

low twist blades have fairly uniform in
ow on the outer one-half of the span (even

using the nonuniform in
ow model), the highly-twisted blades have very nonlinear

distributions of in
ow which should be accounted for in the hover aerodynamics.

6.3.5 Computation of Jacobian and Controls Update

The residual force equations are satis�ed by changing the control vector �̂ such that

the rotor forces required to balance the residual force equations are obtained. Some

of the airframe forces, of course, also shift with changes in the control vector, as

does the blade response which, in turn, in
uence the rotor forces. The nonlinearity
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of the problem requires careful selection of the control vector increments such that

numerical stability is maintained. To this end, the airframe force residual vector

F̂ is linearized about the current control vector setting �̂i such that

F̂ (�̂i +��̂i) = F̂ (�̂i) + [J ]��̂i = 0 (6:73)

where [J ] is the vehicle Jacobian matrix given by

[J ] =
@F̂

@�̂
j�̂=�̂0 (6:74)

The Jacobian matrix is obtained numerically by sequential perturbation of each

control parameter in the control vector, generally about 5 percent of the current

value, which after calculation of blade response, blade loads, and hub loads, results

in an associated residual vector. The Jacobian matrix is then approximated as

[J ] =
F̂ (�̂ +��̂)� F̂ (�̂)

��̂
(6:75)

where ��̂ are the control perturbations. This matrix is calculated using the initial

control settings to begin the coupled trim procedure, but may be recalculated using

the current control vector of any iteration desired. Recalculation of the Jacobian

is only desirable when the initial control settings are faulty as may be the case

when large twist deformations are experienced.

Rearrangement of Eqn. 6.73 gives the desired increment in the controls vector

as

��̂i = �[J ]F̂ (�̂i) (6:76)

and the control vector is updated as

�̂i+1 = �̂i + (1�R)��̂i (6:77)

where R is a damping factor used to maintain numerical stability and 0 < R < 1.

R is typically set to decay exponentially as the number of iterations increases. The

default value for the present formulation is

R = e�
i
40 (6:78)
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6.3.6 Converged Blade Response and Vehicle Trim

Convergence of the coupled trim solution is achieved when both the force residual

equations and the blade response equations are satis�ed. Convergence of the blade

response is de�ned by the scalar sum of azimuthal blade tip de
ections between

successive iterations which must be less than a speci�ed tolerance:

qPN 
j=1(qi+1 � qi)2qPN 

j=1 q
2
i+1

< �1 (6:79)

where N is the number of global temporal Gaussian points. Similarly, for the

force residual convergence, the magnitude of the force vector must be less than a

speci�ed tolerance: vuut nX
i=1

F 2
i < �2 (6:80)

where n is the number of force residuals in the force residual vector for the type

of trim scheme used.

A typical convergence tolerance for �1 is .005 which represent a 0.5 percent

change in the response magnitude between successive iterations. A typical value

for �2 is .0001.

6.3.7 Large Twist Deformations

Convergence problems may be experienced for blades where the elastic twist defor-

mation is substantial. Convergence is more sensitive to twist than to other blade

deformations because twist has a much more signi�cant impact on the blade angle

of attack and aerodynamic loads. Examples of blade designs which might expe-

rience convergence problems are designs which are subject to large twist changes

such as torsionally-soft or extension-twist-coupled blades. Most convergence prob-

lems can be overcome with an accurate estimate of the �nal twist deformation

which can be determined by just a few iterations of the coupled trim procedure.
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The initial control estimates do not include blade elastic twist deformation, but

modi�cations to the trim procedure allow an estimate of the twist deformation to

be included in the initial controls analysis. In the present formulation, the twist

deformation is approximated by a linear distribution based on an input value for the

75-percent radial station, �75. The twist deformation at any given radial position

is then written as

� =
x

:75
�75 (6:81)

which is combined with the built-in twist in the rigid-blade analysis. The control

estimate will then include the twist estimate such that, in general, the collective

estimate �75 without twist included is reduced by an amount approximately equal

to �75 when twist is included. However, the estimate is an improvement on the

simpler approximation (�75)new = (�75)old � �75 because the rigid-blade analysis is

able to account for the change in twist all along the blade span which may have

an in
uence on the collective as well as the other controls in the control vector.

The elastic blade coupled trim procedure generally begins with a zero defor-

mation vector. Without including the initial twist deformation, the Jacobian cal-

culated from the initial response will not re
ect the twist approximation, and this

will adversely a�ect the coupled trim procedure. The twist approximation is thus

extended to the elastic blade trim by initializing the twist part of the deformation

vector as

�i =
xi

:75
�75 (6:82)

where i represents the gaussian point and xi is the radial station associated with

the gauss point. This estimate may also be held �xed for a speci�ed number of

iterations before being relaxed, thereby soothing the elastic blade bending response

which tends to move erratically when large twist deformations are encountered.

The second modi�cation for improving convergence in the coupled trim proce-

dure, as discussed previously, is recalculation of the Jacobian at speci�ed intervals
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of iterations. Using the initial twist estimate in conjunction with the recalculation

of the Jacobian should enable convergence to be reached for any realistic blade

design, vehicle con�guration, and 
ight condition. A typical scenario for obtaining

convergence of a di�cult problem is described in the following paragraph.

Assume an extension-twist-coupled blade with 40 degrees of linear nose-down

twist is modeled on a tiltrotor con�guration in hover. The initial control estimate

gives �75 at about 13 degrees which is an angle of attack of about 7 degrees because

the in
ow angle is calculated at 6 degrees. The initial control estimate is a very

good one if the blade is torsionally rigid, but the elastic twist for this blade is

high, say 15 degrees nose-up at the 75-percent radial station (�75 = 15�). The

elastic coupled trim procedure is begun and the Jacobian is calculated. On the

second iteration after calculation of the Jacobian, the large twist gives a negative

angle of attack at the :75R station. The force residual shows that the total pitch

angle here is too high, and, with the Jacobian, attempts to decrease the collective

to account for this. However, the control step size on the �rst few iterations is

highly damped. The controls cannot move as quickly as the deformations, so large

positive thrust is produced. On subsequent iterations, the coupled trim eventually

overcompensates for the large positive thrust with a very large negative step size

in the collective setting, which results in a large negative thrust. The coupled

trim begins to oscillate between increasingly larger values of positive and negative

thrust, becoming unstable rapidly, and further computation is stopped. During

the �rst few iterations, however, the elastic twist is shown to be about 12 degrees

at :75R which seems reasonable for the blade considered. This twist is then used

as input to linearly estimate the controls, and the procedure is begun again. This

time the control estimate analysis predicts a collective setting of 1 degree because

it accounts for the 12 degrees of nose-up estimated elastic twist. The elastic blade

coupled trim also uses the twist estimate, and it is speci�ed to keep the estimate
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as the actual twist deformation for the �rst three iterations after the Jacobian is

calculated. When the actual twist deformation is produced on the fourth iteration

of coupled trim, the blade response is su�ciently converged that there are only

small changes in the blade response and control vectors. Both begin to converge,

but the elastic twist eventually moves up to 15 degrees at :75R. The force residual

changes as the twist deformation increases such that the natural position of the

collective setting should be -1 degree, but the step size is always a percentage of the

current control value so it cannot cross over a zero point. The coupled trim must

be stopped and restarted with a larger estimate for the elastic twist, say 17 degrees,

so that the initial collective estimate has a negative value. Now, convergence will

be achieved.
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Figure 6.2: Discretization of azimuth into time elements.
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Figure 6.3: Coupled trim procedure as modi�ed for the present formulation.

239



0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

In
du

ce
d 

In
fl

ow
 V

el
oc

ity
, ν

/(
Ω

R
)

0.0

Radial Position, r/R

Uniform Inflow 1

Nonuniform Inflow
Twist, deg.    θ75, deg.

1.  −45 15.2
2.  −35 12.4
3.  −25 11.7
4.  −15 11.7

2
3
4

Figure 6.4: Uniform and nonuniform induced in
ow distributions in hover for

blades with various twists.

240



Chapter 7

Stability Analysis

This chapter addresses the procedures implemented for determination of tiltro-

tor stability characteristics. There are substantial modi�cations required to the

UMARC formulations regarding the assembly of the global system matrices, but

the stability analyses themselves are relatively unchanged. This chapter also dis-

cusses the importance of the engine drive train dynamics on tiltrotor system sta-

bility, and shows how these e�ects are incorporated in the present formulation.

Dynamic in
ow, which has been considered in UMARC formulations, is not in-

cluded.

The UMARC formulations consider both a linearized eigenanalysis and a tran-

sient response analysis for determination of system stability. In the linearized

eigenanalysis, the nonlinear di�erential equations are derived for the perturbed

motion of the system, and are then linearized about the de
ected trim position.

An eigenvalue analysis is performed on the homogeneous form of these equations

to determine the system stability characteristics. For periodic equations, a Flo-

quet transition matrix or a constant-coe�cient approximation is used to obtain

the system equations in suitable form for the eigenanalysis. Advantages of the lin-

earized eigenanalysis are that damping of high-frequency modes can be accurately

estimated, the e�ects of rigid-body motions can be included in the stability cal-
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culations, and the method is computationally e�cient. The disadvantage is that

highly nonlinear e�ects such as 
ow separation and dynamic stall are lost in the

calculations. These e�ects are captured in the transient response analysis in which

the blade motion is integrated over time. After the transient response is calculated,

a damping estimation method such as \moving block" is then used to estimate the

damping of the system modes. Disadvantages of this method are loss of accuracy

in the determination of damping of high-frequency and high-damping modes, sen-

sitivity of system nonlinearities to control perturbations, and high computational

time.

Application of linearized eigenanalysis appears suitable for most of the practi-

cal range of tiltrotor dynamics problems since the most common form of tiltrotor

instability (whirl 
utter) occurs in high-speed axial 
ight. For this 
ight condition,

the equations of motion have constant coe�cients. Thus, there is no need to con-

sider Floquet theory or use constant coe�cient approximations for most cases. For

the tiltrotor con�guration, the isolated blade stability is not important because the

hub motion is coupled with the elastic wing modes, and has a large in
uence on the

system damping. The present formulation considers only linearized eigenanalysis

in the �xed frame.

7.1 Assembly of the System Equations

Assembly of the system equations is based on application of Hamilton's principle

given by Eqns. 4.35-4.38. The system matrices de�ned in Chapters 4 and 5 are

derived by assuming the degrees of freedom (state variables) q̂; x̂h, and qw are small

perturbations about the de
ected trim position:

q̂ = (q̂)0 +�q̂ (7.1)

x̂h = (x̂h)0 +�x̂h (7.2)
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q̂ = (q̂w)0 +�q̂w (7.3)

where subscript 0 indicates the steady values and � indicates a small perturbation.

The variational quantities are then given by:

�q̂ = �(q̂)0 + ��q̂ (7.4)

�x̂h = �(x̂h)0 + ��x̂h (7.5)

�q̂ = �(q̂w)0 + ��q̂w (7.6)

but for the converged trim solution the variation of the steady value must be zero

by de�nition so that

�q̂ = ��q̂ (7.7)

�x̂h = ��x̂h (7.8)

�q̂ = ��q̂w (7.9)

The work and energies associated with the perturbation motion can also be

written as a sum of steady and perturbation quantities which gives the following

form for the variation of Hamilton's principle:

Z t2

t1

(�U0 � �T0 � �W0) dt+
Z t2

t1

(��U0 � ��T0 � ��W0) dt = 0 (7:10)

However, the steady state trim solution satis�es the equation

Z t2

t1

(�U0 � �T0 � �W0) dt = 0 (7:11)

so the energy variation corresponding to the perturbation motion becomes:

Z t2

t1

(��U0 � ��T0 � ��W0) dt = 0 (7:12)

Thus, the perturbation symbol may be dropped from the equations with the un-

derstanding that all the state variables represent perturbation quantities after the

trim solution is reached.
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Following the application of Hamilton's principle, the blade, hub, and wing

matrices are de�ned in Chapters 4 and 5. These element matrices are classi�ed as

follows:

[Mbb] Blade-blade structural mass matrix

[Cbb] Blade-blade structural damping matrix

[Kbb] Blade-blade structural sti�ness matrix

[Fb] Blade structural load vector with nonlinear terms

[Mbh] Blade-hub structural mass matrix

[Cbh] Blade-hub structural damping matrix

[Kbh] Blade-hub structural sti�ness matrix

[Mhb] Hub-blade structural mass matrix

[Chb] Hub-blade structural damping matrix

[Khb] Hub-blade structural sti�ness matrix

[Mhh] Hub-hub structural mass matrix

[Chh] Hub-hub structural damping matrix

[Khh] Hub-hub structural sti�ness matrix

[Mww] Wing structural mass matrix

[Cww] Wing structural damping matrix

[Kww] Wing structural sti�ness matrixh
MA

bb

i
Blade-blade aerodynamic mass matrixh

CA
bb

i
Blade-blade aerodynamic damping matrixh

KA
bb

i
Blade-blade aerodynamic sti�ness matrixh

FA
b

i
Blade aerodynamic load vectorh

MA
bh

i
Blade-hub aerodynamic mass matrix
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h
CA
bh

i
Blade-hub aerodynamic damping matrixh

KA
bh

i
Blade-hub aerodynamic sti�ness matrixh

MA
hb

i
Hub-blade aerodynamic mass matrixh

CA
hb

i
Hub-blade aerodynamic damping matrixh

KA
hb

i
Hub-blade aerodynamic sti�ness matrixh

CA
hh

i
Hub-hub aerodynamic damping matrixh

KA
hh

i
Hub-hub aerodynamic sti�ness matrixh

MA
ww

i
Wing aerodynamic mass matrixh

CA
ww

i
Wing aerodynamic damping matrixh

KA
ww

i
Wing aerodynamic sti�ness matrixh

CA
bb

i
nl

Blade-blade nonlinear aerodynamic damping matrixh
KA
bb

i
nl

Blade-blade nonlinear aerodynamic sti�ness matrixh
CA
bh

i
nl

Blade-hub nonlinear aerodynamic damping matrixh
KA
bh

i
nl

Blade-hub nonlinear aerodynamic sti�ness matrixh
CA
hb

i
nl

Hub-blade nonlinear aerodynamic damping matrixh
KA
hb

i
nl

Hub-blade nonlinear aerodynamic sti�ness matrixh
CA
hh

i
nl

Hub-hub nonlinear aerodynamic damping matrixh
KA
hh

i
nl

Hub-hub nonlinear aerodynamic sti�ness matrix

The blade part of the matrices corresponds to the 15 discrete blade degrees of

freedom q̂, the hub part of the matrices corresponds to the 8 hub degrees of freedom

x̂h, and the wing part of the matrices corresponds to the 15 discrete wing degrees

of freedom q̂w. The terms of these matrices are as yet not integrated over the

element length. Also, the blade equations are derived in a rotating coordinate

system while the hub and wing equations are derived in a �xed coordinate system.

This di�erence needs to be resolved before a stability solution can be performed.
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7.1.1 Element Integration

Calculation of the element matrices requires integration over the length of the beam

element and is performed numerically. A 6-point Gauss quadrature procedure is

used in UMARC (and also in the present analysis) which gives the integration of

a typical term in the element matrices as:

Z 1

0
F (s) ds =

6X
j=1

wjF (sj) (7:13)

where wj is the weighting factor at the jth quadrature point and sj is the posi-

tion of the jth quadrature point. A 6-point formula is used because it o�ers the

best compromise between accuracy and numerical e�ciency for the integration of

polynomials associated with the present formulation.

The numerical integration technique is highly compatible with tiltrotor blades

because these blades typically have large twists. Since the beam properties are

de�ned in the local cross-section reference frame, but are converted to an untwisted

reference frame, integration of an element with large twist can introduce signi�cant

errors, particularly if the beam properties and twist vary along the element span.

A linear interpolation scheme has been introduced in the present formulation to

account for beam property and twist variations within an element. Properties for

the beam elements may be designated at each node point. During the Gaussian

integration, the properties at each of the 6 Gauss point locations are estimated as

F (sj) = F (0) +
sj

l
(F (l)� F (0)) (7:14)

where F (0) is a typical beam property at the �rst node point, F (l) is a typical

beam property at the second node point, and l is the element length. In previous

UMARC formulations, a beam property is assumed constant over the element

length, and if nonlinear twist is used, the twist is also assumed constant over the

element length.
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Following integration, the structural, aerodynamic, and nonlinear aerodynamic

contributions of the common matrix types are summed to produce the total element

matrices. The total element matrices are now designated by a superscript e as:

[M e
bb] Blade-blade total element mass matrix

[Ce
bb] Blade-blade total element damping matrix

[Ke
bb] Blade-blade total element sti�ness matrix

[F e
b ] Blade total load vector with nonlinear terms

[M e
bh] Blade-hub total element mass matrix

[Ce
bh] Blade-hub total element damping matrix

[Ke
bh] Blade-hub total element sti�ness matrix

[M e
hb] Hub-blade total element mass matrix

[Ce
hb] Hub-blade total element damping matrix

[Ke
hb] Hub-blade total element sti�ness matrix

[M e
hh] Hub-hub total element mass matrix

[Ce
hh] Hub-hub total element damping matrix

[Ke
hh] Hub-hub total element sti�ness matrix

[M e
ww] Wing total element mass matrix

[Ce
ww] Wing total element damping matrix

[Ke
ww] Wing total element sti�ness matrix

7.1.2 Assembly of the Element Matrices

Assembly of the elements involves conversion from local element nodes and lo-

cal degrees of freedom to global nodes and global degrees of freedom. The blade

elements are assembled end-to-end with the second local node of one element cor-

responding to the �rst local node of the following element. Each overlap de�nes
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one global node. Following the approach of past UMARC formulations, the blade

elements are assembled from the blade tip to the root so that global node 1 is at

the blade tip and global node Ne + 1 is at the center of rotation. The assembly

process associated with conversion of the blade element degrees of freedom to the

blade global degrees of freedom is a standard �nite element technique described in

several references (Ref. 89 for example). This process gives the global blade-blade,

blade-hub, hub-blade, and hub-hub matrices which are listed as:

[MBB] Blade-blade global mass matrix

[CBB] Blade-blade global damping matrix

[KBB] Blade-blade global sti�ness matrix

[FB] Blade global load vector with nonlinear terms

[MBH ] Blade-hub global mass matrix

[CBH ] Blade-hub global damping matrix

[KBH ] Blade-hub global sti�ness matrix

[MHB] Hub-blade global mass matrix

[CHB] Hub-blade global damping matrix

[KHB] Hub-blade global sti�ness matrix

[MHH ] Hub-hub global mass matrix

[CHH ] Hub-hub global damping matrix

[KHH ] Hub-hub global sti�ness matrix

The same procedure is repeated for the wing element matrices to obtain the global

wing matrices:

[MWW ] Wing global mass matrix

[CWW ] Wing global damping matrix

[KWW ] Wing global sti�ness matrix
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The global blade displacement vector contains 9 x (Ne + 1) displacements before

application of boundary conditions, and may be written as:

q̂B = fu1 v1 v01 w1 w
0

1 �1 u2 �2 u3 u4 v2 v
0

2 w2 w
0

2 �3

. . .u(3Ne+1) v(Ne+1) v
0

(Ne+1) w(Ne+1) w
0

(Ne+1) �(2Ne+1)g (7.15)

A similar global displacement vector is obtained for the wing q̂W , but the degrees

of freedom correspond to the number of elements selected for the wing which may

be di�erent from the number of elements selected for the blade. The global hub

displacement vector x̂H is the same as the element displacement vector x̂h.

Application of the appropriate boundary conditions reduces the size of the

displacement vector and the appropriate rows and columns of the system matrices

are eliminated. For a hingeless rotor system, the blade is cantilevered at the root

so all six kinematic variables associated with node Ne + 1 are assumed to be zero.

As hinges are incorporated into the model, as for an articulated rotor system, the

appropriate constraints are relaxed. The wing is assumed to be cantilevered at the

root, so all six degrees of freedom there are constrained.

Following assembly, application of boundary conditions, and summation over

Nb blades, the system equations may be written in matrix form as:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(�q̂B)1

(�q̂B)2
...

(�q̂B)Nb

�x̂H

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

T 0
BBBBBBBBBBBBB@

2
66666666666664

(MBB)1 0 � � � 0 (MBH)1

0 (MBB)2 � � � 0 (MBH)2
...

...
. . .

...
...

0 0 � � � (MBB)Nb (MBH)Nb

(MHB)1 (MHB)2 � � � (MHB)Nb MHH

3
77777777777775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(�̂qB)1

(�̂qB)2
...

(�̂qB)Nb

�̂xH

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
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+

2
66666666666664

(CBB)1 0 � � � 0 (CBH)1

0 (CBB)2 � � � 0 (CBH)2
...

... . . .
...

...

0 0 � � � (CBB)Nb (CBH)Nb

(CHB)1 (CHB)2 � � � (CHB)Nb CHH

3
77777777777775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

( _̂qB)1

( _̂qB)2
...

( _̂qB)Nb

_̂xH

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

+

2
66666666666664

(KBB)1 0 � � � 0 (KBH)1

0 (KBB)2 � � � 0 (KBH)2
...

... . . .
...

...

0 0 � � � (KBB)Nb (KBH)Nb

(KHB)1 (KHB)2 � � � (KHB)Nb KHH

3
77777777777775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(q̂B)1

(q̂B)2
...

(q̂B)Nb

x̂H

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(FB)1

(FB)2
...

(FB)Nb

0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

1
CCCCCCCCCCCCCA

(7.16)

The nonlinear contributions to the force vectors are linearized using a Taylor Series

expansion for each of the Nb blades:

FB =
@FB

@q̂B
q̂B +

@FB

@ _̂qB
_̂qB (7:17)

and the system equations can then be expressed as:

2
64 MRR MRH

MHR MHH

3
75
8><
>:

�̂qR

�̂xH

9>=
>;+

2
64 CRR CRH

CHR CHH

3
75
8><
>:

_̂qR

_̂xH

9>=
>;

+

2
64 KRR KRH

KHR KHH

3
75
8><
>:
q̂R

x̂H

9>=
>; = 0 (7.18)
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where

MRR =

2
6666666664

(MBB)1 0 � � � 0

0 (MBB)2 � � � 0

...
...

. . .
...

0 0 � � � (MBB)Nb

3
7777777775

(7.19)

CRR =

2
6666666664

(CBB � @FB
@ _qB

)1 0 � � � 0

0 (CBB � @FB
@ _qB

)2 � � � 0

...
...

. . .
...

0 0 � � � (CBB � @FB
@ _qB

)Nb

3
7777777775

(7.20)

KRR =

2
6666666664

(KBB � @FB
@qB

)1 0 � � � 0

0 (KBB � @FB
@qB

)2 � � � 0

...
...

. . .
...

0 0 � � � (KBB � @FB
@qB

)Nb

3
7777777775

(7.21)

q̂R = f(q̂B)T1 (q̂B)
T
2 . . . (q̂B)

T
Nb
g (7.22)

The wing system equations are not yet included in the system. The hub and rotor

system equations given by Eqn. 7.18 are next transformed into normal mode space

before the wing system equations are added in to complete the system.

7.1.3 Normal Mode Transformation

Due to the size of the �nite element matrices associated with Nb elastic blades, the

computational e�ort is reduced by transforming the blade equations into normal

mode space. This typically reduces the number of degrees of freedom from about

40-100 to about 6-8 per blade. The normal mode transformation of the present

formulation is exactly the same as for past UMARC formulations. Some of the

details of this process are given in this section for completeness.

After a trimmed solution is obtained, the deformed blade mode shapes are cal-

culated. These modes are obtained using an eigenanalysis on the blade structural
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system using the mean de
ected trim position over one rotor revolution, and there-

fore include blade couplings associated with the nonlinear structural terms. The

resulting modes are then used to transform the rotor displacement vector into the

modal space:

q̂R =

8>>>>>>>>><
>>>>>>>>>:

(�q̂B)1

(�q̂B)2
...

(�q̂B)Nb

9>>>>>>>>>=
>>>>>>>>>;
=

2
6666666664

�

�

.. .

�

3
7777777775
q̂R =

8>>>>>>>>><
>>>>>>>>>:

(�p̂B)1

(�p̂B)2
...

(�p̂B)Nb

9>>>>>>>>>=
>>>>>>>>>;
= [�] p̂R (7:23)

The blade-related matrices are then transformed into modal space as:

2
64 �MRR

�MRH

�MHR MHH

3
75
8><
>:

�̂pR

�̂xH

9>=
>;+

2
64 �CRR �CRH

�CHR CHH

3
75
8><
>:

_̂pR

_̂xH

9>=
>;

+

2
64 �KRR

�KRH

�KHR KHH

3
75
8><
>:
p̂R

x̂H

9>=
>; = 0 (7.24)

where the transformations are given by:

�MRR = [�]
T
MRR [�] (7.25)

�MRH = [�]
T
MRH (7.26)

�MHR = MHR [�] (7.27)

�CRR = [�]
T
CRR [�] (7.28)

�CRH = [�]
T
CRH (7.29)

�CHR = CHR [�] (7.30)

�KRR = [�]
T
KRR [�] (7.31)

�KRH = [�]
T
KRH (7.32)

�KHR = KHR [�] (7.33)
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7.1.4 Addition of the Wing Equations

Modal reduction of the blade-hub system equations does not a�ect the hub degrees

of freedom as shown by Eqn. 7.24. The discrete wing degrees of freedom at the

wing tip and six of the eight hub degrees of freedom are the same as discussed in

Chapter 4. The relationship between the common wing and hub degrees of freedom

is given by:

Wing dof Hub dof

u1 = �yh (7.34)

v1 = xh (7.35)

v01 =  h (7.36)

w1 = zh (7.37)

w0

1 = ��h (7.38)

�1 = ��h (7.39)

where u1; v1; v
0

1; w1; w
0

1; and �1 represent the discrete degrees of freedom at the

wing tip. Using a procedure analogous to the summation of the element matri-

ces, the wing system matrices can be summed with the hub-related matrices to

produce a new set of coupled hub-wing matrices. The procedure is represented

mathematically as:

�MWW = MHH

M
MWW (7.40)

�CWW = CHH
M

CWW (7.41)

�KWW = KHH

M
KWW (7.42)

x̂W =

8>>>>><
>>>>>:

�GC

�GS

q̂W

9>>>>>=
>>>>>;

(7.43)
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where
L

is used to indicate the procedure of adding �nite element matrices with

common global degrees of freedom. The newWW (with bar) matrices contain two

more rows and columns than the old WW matrices, and these rows and columns

correspond to �GC and �GS from the HH matrices. The rest of the HH matrices

(which correspond to the remaining 6 hub degrees of freedom) are added into the

�rst six rows and columns of the oldWW matrix (which correspond to the wing tip

degrees of freedom). Rows and/or columns of the HH matrices are �rst rearranged

to align with the wing tip discrete degrees of freedom to facilitate the assembly

process. The hub-blade and blade-hub matrices are modi�ed as:

�MRH ! �MRW (7.44)

�MHR ! �MWR (7.45)

�MRH ! �MRW (7.46)

�MHR ! �MWR (7.47)

�MRH ! �MRW (7.48)

�MHR ! �MWR (7.49)

where ! is used to indicate a transformation of rows, columns, and signs such

that the hub-related matrices correspond to the wing matrices and are consistent

with Eqns. 7.34-7.39. The new matrices are �lled with rows and columns of zeros

where there is no coupling between the rotor system and the wing degrees of

freedom beyond those associated with the wing tip. The resulting coupled rotor-

wing system equations are given by:

2
64 �MRR

�MRW

�MWR
�MWW

3
75
8><
>:

�̂pR

�̂xW

9>=
>;+

2
64 �CRR �CRW

�CWR
�CWW

3
75
8><
>:

_̂pR

_̂xW

9>=
>;

+

2
64 �KRR

�KRW

�KWR
�KWW

3
75
8><
>:

p̂R

x̂W

9>=
>; = 0 (7.50)
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7.1.5 Engine Drive Train Dynamics

The importance of modeling the tiltrotor engine drive train dynamics accurately

in high-speed axial 
ight mode is discussed in Ref. 35. It is concluded in this

reference that the dynamic behavior of a typical system with engine, transmission,

and governor modeled is much like that of a windmilling rotor system, with some

in
uence of the engine inertia and damping. The interconnect shaft is shown to

have a signi�cant in
uence on the antisymmetric tiltrotor dynamics, but these

modes are not considered in the present formulation. Based on the results of

Ref. 35, a windmilling rotor system is employed as the drive train model in the

present formulation, and is used for stability analysis of the tiltrotor in axial 
ight.

For a windmilling rotor, a rotational degree of freedom about the shaft is in-

troduced, and is unconstrained with respect to the wing. In axial 
ight, the hub

degree of freedom �h corresponds to a rotation about the shaft, and is thus used

to model the windmilling rotor system. The assembly process described in the

above section is modi�ed so that �h is not constrained to the corresponding wing

tip motion. This is tantamount to replicating the wing-assembly procedure with 5

hub degrees of freedom instead of 6, where the hub degree of freedom �h no longer

corresponds to the wing tip degree of freedom w0

1. The result is one additional

global degree of freedom in the wing displacement vector:

x̂W =

8>>>>>>>>><
>>>>>>>>>:

�h

�GC

�GS

q̂W

9>>>>>>>>>=
>>>>>>>>>;

(7:51)

There is also one additional row and column in each of the WW system matrices,

one additional column in the RW matrices, and one additional row in the WR

system matrices of Eqn. 7.50.

A more advanced engine drive train model may now be obtained by including
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the appropriate inertia, damping, and sti�ness properties associated with �h. This

model could itself have several degrees of freedom which are coupled to the rotor

system, through �h, using an assembly process analogous to that used to couple the

wing and rotor systems. Such a model is not considered in the present formulation.

7.2 Stability Analysis Procedure

The stability analysis procedure from this point on is unmodi�ed from previous

UMARC formulations except for the much larger size of the global system equa-

tions due to the elastic wing model. The system equations are next transformed

into �rst order form for e�cient stability eigenanalysis. Here, a system state vector

Y is de�ned as:

Ŷ =

8>>>>>>>>><
>>>>>>>>>:

_̂pR

_̂xW

p̂R

x̂W

9>>>>>>>>>=
>>>>>>>>>;

(7.52)

The system equations are then written in �rst order form as:

2
6666666664

�MRR
�MRW 0 0

�MWR
�MWW 0 0

0 0 I 0

0 0 0 I

3
7777777775
_̂Y

+

2
6666666664

�CRR �CRW �KRR
�KRW

�CWR
�CWW

�KWR
�KWW

I 0 0 0

0 I 0 0

3
7777777775
Ŷ = 0 (7.53)
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Multiplication of Eqn. 7.53 by the matrix

2
6666666664

2
64 �MRR

�MRW

�MWR
�MWW

3
75
�1 2

64 0 0

0 0

3
75

2
64 0 0

0 0

3
75

2
64 I 0

0 I

3
75

3
7777777775

(7:54)

gives the desired �rst order form of the system equations as

_̂Y = [A( ; Ŷ0)]Ŷ (7:55)

The stability matrix Â is shown to be a function of both the azimuth location  

and the trim solution vector Ŷ0. At this point the blade-related parts of the system

equations are formulated in a rotating frame. Since the wing-related parts of the

system equations are formulated in a �xed frame, it is advantageous to transform

the blade-related parts also into a �xed frame.

7.2.1 Fixed Coordinate Transformation

The �xed coordinate transformation implemented in past UMARC formulations

as well as the present formulation involves two steps: transformation of the blade-

related rotating frame coordinates to �xed coordinates and transformation of the

blade equations into �xed frame equations. The blade-related rotating frame co-

ordinates are related to the �xed frame coordinates �� as

p̂R = [Ab]�̂ (7:56)

where

�̂ =

8>>>>>>>>><
>>>>>>>>>:

�(1)

�(2)

...

�(m)

9>>>>>>>>>=
>>>>>>>>>;

(7:57)
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and m is the number of modes used to represent the blade response. Each ele-

ment in the above column vector represents another column vector of �xed frame

coordinates for the kth modal displacement of the blade:

�(k) =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�0

�1c

�2c
...

�ns

�n=2

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(7:58)

Each �(k) has length Nb so that the length of �� is mNb. The transformation matrix

Ab is written as

[Ab] =

2
6666666664

ab 0 . . . 0

0 ab . . . 0

0 0
. . . 0

0 0 . . . ab

3
7777777775

(7:59)

where each column represents a blade mode considered for the stability analysis

and

ab =

8><
>:
f1; cos b; . . . ; cos(n b); sin b; . . . ; sin(n b); (�1)bg if Nb even

f1; cos b; . . . ; cos(n b); sin b; . . . ; sin(n b)g if Nb odd
(7.60)

n =

8><
>:

Nb�2
2

if Nb even

Nb�1
2

if Nb odd
(7.61)

Because [Ab] is a function of time, the derivatives of the modal displacement vectors

are written as:

_̂p = Âb _̂� + _̂Ab�̂ = Âb _̂� + B̂b�̂ (7.62)

�̂p = Âb �̂� + 2 _̂Ab _̂� + �̂Ab�̂

= Âb �̂� + 2B̂b
_̂� + Ĉb�̂ (7.63)
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The blade equations (system equations which are coe�cients of �p̂) are then

transformed into the �xed frame using the following operations:

1

Nb

NbX
m=1

(Eqn) (7.64)

2

Nb

NbX
m=1

(Eqn) cos(k m) (7.65)

2

Nb

NbX
m=1

(Eqn) sin(k m) (7.66)

1

Nb

NbX
m=1

(Eqn)(�1)m (7.67)

for each of the k blades.

After substitution of the �xed frame transformations given by Eqns. 7.62- 7.63

and the �xed frame equation transformations given by Eqns. 7.64-7.67, the system

equations given by Eqn. 7.50 then become

2
64 �MRfRf

�MRfW

�MWRf
�MWW

3
75
8><
>:

�̂�

�̂xW

9>=
>;+

2
64 �CRfRf

�CRfW

�CWRf
�CWW

3
75
8><
>:

_̂�

_̂xW

9>=
>;

+

2
64 �KRfRf

�KRfW

�KWRf
�KWW

3
75
8><
>:

�̂

x̂W

9>=
>; = 0 (7.68)

where the following de�nitions for the new �xed-frame blade-related matrices ap-

ply:

�MRfRf =
1

Nb

NbX
m=1

[Hb][ �MRR][Ab] (7.69)

�CRfRf =
1

Nb

NbX
m=1

[Hb](2[ �MRR][Bb] + [ �CRR][Ab]) (7.70)

�KRfRf =
1

Nb

NbX
m=1

[Hb]([ �MRR][Cb] + [ �CRR][Bb] + [ �KRR][Ab]) (7.71)

�MRfW =
1

Nb

NbX
m=1

[Hb][ �MRW ] (7.72)

�CRfW =
1

Nb

NbX
m=1

[Hb][ �CRW ] (7.73)
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�KRfW =
1

Nb

NbX
m=1

[Hb][ �KRW ] (7.74)

�MWRf =
1

Nb

NbX
m=1

[ �MWR][Ab] (7.75)

�CWRf =
1

Nb

NbX
m=1

(2[ �MWR][Bb] + [ �CWR][Ab]) (7.76)

�KWRf =
1

Nb

NbX
m=1

([ �MWR][Cb] + [ �CWR][Bb] + [ �KWR][Ab]) (7.77)

and

[Hb] =

2
666664
hb

. . .

hb

3
777775 (7:78)

which is a mNb x m matrix where m is the number of modes and

hb =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1

2 cos( b)

2 cos(2 b)

...

2 cos(n b)

2 sin( b)

2 sin(2 b)

...

2 sin(n b)

(�1)b

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(7:79)

which has length Nb. This system of equations may also be converted to �rst order

form using the procedure described in the previous section. The resulting system

is then written in �rst order form as

_̂Y f = [Af ( )]Ŷf (7:80)

where [Af ( )] is the �xed-frame stability matrix and Ŷf is the �xed-frame vector
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of state variables:

Ŷf =

8>>>>>>>>><
>>>>>>>>>:

_̂�

_̂xW

�̂

x̂W

9>>>>>>>>>=
>>>>>>>>>;

(7:81)

If the rotor system is aligned for axial or hover 
ight, then the matrix [Af ] is not

a function of  , and Eqn. 7.80 may be solved using standard eigenvalue analy-

sis techniques. Solution gives the damping and frequencies of the rotor and wing

modes associated with the system. If the tiltrotor is in conversion mode or heli-

copter forward 
ight mode then the matrix [Af ] is a function of  , and steps must

be taken to account for the periodicity of the system before a solution may be

obtained.

7.2.2 Floquet Theory

The linearized �rst order system given by Eqn. 7.80 may contain periodic terms

because of the azimuthal change in aerodynamic forces associated with forward


ight and/or application of cyclic pitch controls. Stability characteristics of a lin-

ear periodic system may be determined using Floquet theory. Formulations of

Floquet theory for �nite element based stability analysis are presented in Refs. 67

and 88, and these derivations represent the formulations used in the current anal-

ysis. Details of the basic relations developed in these formulations are presented

in Ref. 79, and an outline of the procedure is presented in this section.

The system of equations including wing motion is placed in �rst order form as

Ŷ = [A]Ŷ (7:82)

The solution to this system must be expressible as a linear combination of the

state variables at time  0 such that

Ŷ ( ) = [�( ;  0)]Ŷ ( 0) (7:83)
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where the � matrix is known as the state transition matrix, and by de�nition:

[�( 0;  0)] = [I] (7:84)

Substitution of Eqn. 7.82 into Eqn. 7.83 gives

[ _�] = [A][�] (7:85)

The rotorcraft equations are periodic with a period of 2� so that

[A( + 2�)] = [A( )] (7:86)

and the transition matrix may be expressed as

[�( ;  0)] = [P ( )]e[B( � 0)] (7:87)

where [P ] is a periodic matrix of period 2� and [P ( 0)] = [I]. The exponential

decay or growth of the system solution is shown to depend only on the matrix [B].

The discrete Floquet transition matrix is de�ned as:

[Q] = [�( 0 + 2�;  0)] (7:88)

which may be written as

[Q] = e2�[B] (7:89)

Let [�] be the eigenvalue matrix (Jordan form) of [B], and [S] be the corresponding

modal matrix. Then [B] = [S][�][S]�1 and

[Q] = e2�[B] = [S]e2�[�][S]�1 (7:90)

Thus, [S] is also the modal matrix of [Q], and the eigenvalue matrix associated

with the Floquet transition matrix is

[�] = e2�[�] (7:91)

or

[�] =
1

2�
ln[�] (7:92)
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The system is unstable if the real part of any eigenvalue is greater then zero

(Re(�i) > 0).

The Floquet transition matrix Q can be computed by integrating Eqn. 7.85

over one rotor revolution starting with the initial conditions given by Eqn. 7.84.

The eigenvalues of [B] determine the system stability, but these eigenvalues are

shown to be the same as the eigenvalues of the Floquet transition matrix [Q]:

�k = Re(�k) + iIm(�k) = e2�(�k+i!k) (7:93)

The Floquet stability eigenvalues are thus given by the kth eigenvalue of [Q] as

�k =
1

2�
ln
q
Re2(�k) + Im2(�k) (7.94)

!k =
1

2�
tan�1

 
Im(�k)

Re(�k)

!
� n
;n = 0; 1; 2; . . . (7.95)

where �k and !k are the decay rate and Floquet frequency of the kth mode,

respectively. The frequency is shown to be multivalued; the sum of a principle

part and an integer multiple of the rotor rotational velocity. Determination of the

frequency value which corresponds to the physical system requires additional e�ort.

One approach is to use results of a constant coe�cient approximation (discussed

in next section) to determine this frequency.

It should be noted that the stability of a tiltrotor system must be assessed

in a �xed frame because of the large in
uence of the wing motion on the rotor

system. Application of the Floquet theory in the �xed frame increases the size

of the transition matrix by a factor of N2
b since all blades must be considered

simultaneously.

7.2.3 Constant Coe�cient Approximation

Much of the derivations presented in this research has assumed that the system

modeled is moderately nonlinear. This assumption reduces the size and complexity
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of the system equations, and allows the basic qualities of the nonlinear system to be

captured in the linear solution. In an analogous manner, it may be assumed that in

certain 
ight modes that the system is periodic, but not highly periodic. The basic

qualities of the periodicity may then be captured by averaging the system stability

matrix over one rotor revolution, and the resulting system is greatly simpli�ed

as the stability matrix becomes a matrix of constant terms only. The constant

coe�cient approximation to the stability matrix is given by:

[Afc] =
1

2�

Z 2�

0
[Af ] d (7:96)

and the new system of equations given by

_̂Y = [Afc] Ŷ (7:97)

may be solved using standard eigenvalue analysis.

The constant coe�cient approximation generally gives an accurate representa-

tion of the system stability of helicopters for advance ratios under 0.3. For tiltrotor

application, the constant coe�cient approximation should be accurate over most

of the 
ight envelope because conversion to an axial 
ight mode occurs at advance

ratios less than 0.3. Once in axial 
ight, the periodicity disappears due to the

symmetry of the rotor with respect to the oncoming 
ow.

The advantage of the constant coe�cient approximation compared to Floquet

theory is more than mere computational e�ciency. The nature of Floquet theory

is such that the frequencies of the Floquet eigenvalues do not represent the physi-

cal frequencies of the system modes. It is, therefore, very di�cult to identify the

mode which is associated with the damping part of the eigenvalue. The constant

coe�cient approximation aids in this process (even in 
ight modes where the ap-

proximation is poor) since the frequencies do match the frequencies of the physical

system.
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Chapter 8

Results and Discussion

This chapter addresses results obtained using the elastic-blade tiltrotor analysis

as developed in Chapters 4 - 7. This chapter can de divided into three major

sections. The �rst section presents correlations of the present analysis with results

from 
ight tests and other analyses as reported in the open literature. Correlation

e�orts include controls, performance predictions in hover and cruise 
ights, fre-

quency and damping predictions of wing and rotor modes in airplane mode, and

vibratory bending moments in conversion mode. The second section presents an

investigation of bending-twist-coupled rotor blades designed to expand the tiltro-

tor whirl 
utter boundaries. Here, the adverse pitch-lag dynamics associated with

rotor precone are shown to be negated by the elastic bending-twist-coupled rotor

blade, thereby improving tiltrotor stability. The third section presents an investiga-

tion of extension-twist-coupled rotor blades designed to improve the aerodynamic

performance of tiltrotors in hover and cruise 
ight modes. Here, large amounts of

elastic twist are used to obtain an improved twist distribution for the hover 
ight

mode while maintaining an optimum twist distribution in cruise mode. The elas-

tic twist in hover is di�erent from cruise because of the variation in rotor speeds

between the helicopter and airplane 
ight modes.
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8.1 Baseline Design

The rotor and wing con�guration used for validation of the present analysis, and

as a baseline for performance and stability comparisons of elastically-coupled blade

designs, is the Bell-designed, full-scale, gimballed, sti�-inplane model as tested in

the NASA Ames 40- by 80-Foot Wind Tunnel [31]. Much of the data needed to

describe this system are reported in Chapter 2, Tables 2.1-2.3. Additional plots

describing the blade twist, elastic axis o�sets, mass, and sti�ness distributions are

shown in Figs. 8.1 - 8.6. This series of plots indicate, by a darkened symbol, the

values input for the endpoints of each of the �ve beam elements used to model

the blade. Linear interpolation was used to obtain the value of each parameter

at the six gauss points (used for numerical integration within each of the beam

elements) so it is appropriate to connect each darkened symbol with a straight

line. It should be noted that the data shown in these plots are an approximation

of the distributions illustrated in reference 31, conformed to the spanwise node

point locations of the present model. The baseline rotor system also has positive

pitch-
ap coupling with �3 = -22.5� and a rotor precone of 2.5�. Plots illustrating

the wing elastic axis o�sets, mass, and sti�ness distributions are shown in Figs. 8.7

- 8.9. Linear interpolation is not used for the wing because there is little variation

of the spanwise properties, so the parameter values in these plots are shown to be

constant within each beam element.

8.2 Validation

The objective of this section is to build con�dence in the present elastic-blade

tiltrotor analysis by showing an acceptable level of agreement with other analyses

as well as experimental results. The capabilities of the present tiltrotor analysis

extends to all free-
ight modes of operation for performance and loads calculations,
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but only to a coupled cantilevered wing and rotor system for stability calculations.

The correlation e�orts of the present section will address all of these predictive

capabilities. An important note for this section is that the de�nition of the pylon

angle is changed to be consistant with past de�nitions. Here, the pylon angle at

zero degrees designates airplane mode while the pylon angle at 90 degrees des-

ignates helicopter mode. Recall that the original formulation uses an opposite

de�nition for the pylon angle to be consistant with the helicopter de�nition of

rotor shaft tilt.

8.2.1 Blade Frequencies

The bending frequencies and mode shapes of the baseline elastic rotor blade

trimmed at V=
R = 0:7 are shown in Fig. 8.10. The left side of the �gure shows

the results reported in reference 31 while the right side shows the results ob-

tained with the present analysis. As shown, the rotor system trims to about the

same �75 in each analysis (1.3% di�erence), and the frequencies of the �rst three

predominantly-bending modes are in good agreement. The analysis of reference 31

considers only uncoupled torsion, so there is no torsion participation in the bend-

ing mode shapes (shown on the right side of the �gure) which is not the case with

the present analysis.

The analysis of reference 31 considers a rigid pitch motion uncoupled from the

elastic torsion modes, and the elastic torsion motion is uncoupled from the blade

bending motion as well. A rigid-body torsion mode may be created in the present

analysis by using a torsion spring at the blade root. However, the elastic torsional

sti�ness of the beam elements must be much greater than the torsion spring or else

the rigid-body motion will disappear and couple with the �rst-elastic mode. As

shown in Fig. 8.11, the frequency of the rigid pitch and �rst elastic modes are very

close, so they will not both exist in the present torsionally-coupled analysis or in
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the physical system. The rigid-body motion is not considered in the baseline model

of the present analysis because this mode cannot in reality be decoupled from the

elastic motion. Further, an objective of this chapter is to investigate potential

use of elastic blade couplings (bending-twist, extension-twist) which requires an

accurate model of the blade torsional sti�ness. It is, therefore, undesirable to

de�ne a baseline design with a rigid body torsion mode that can only be simulated

by use of torsionally-sti� outboard beam elements. The baseline design for the

present analysis will be based on the the torsion properties de�ned in reference 31

which produces the torsion mode shape and frequency shown on the right side of

Fig. 8.11. The elastic predominantly-torsion mode shapes and frequencies are in

good agreement between the two analyses.

Predicited variations in the �rst three elastic blade frequencies with velocity

(airplane-mode) are shown in Fig. 8.12 for both the the present analysis and the

analysis of reference 31. The bending sti�nesses are highly in
uenced by the for-

ward 
ight velocity because large increases in the collective setting are required

as the speed increases, and this tends to place more of the sti�er chord bending

sti�ness of the blade in the 
ap direction and tends to place more of the softer


ap bending sti�ness of the blade in the lag direction. Thus, the �rst mode, which

is predominantly inplane, is shown to decrease in frequency as velocity increases,

and the second mode, which is predominantly a 
ap mode, is shown to increase

in frequency as velocity increases. The agreement in predictions between the two

analyses is shown to be good, with the higher modes in closer agreement than the

lower mode. The �rst bending modes are sensitive to the sti�ness distributions

at the root end of the blade, but the sti�nesses of the baseline design varies dras-

tically at the root, so some discrepancy in modeling between the two analyses is

understandable.
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8.2.2 Stability in High-Speed Axial Flight

The discussion to this point has shown that the structural modeling of the tiltrotor

system in the present analysis is accurate. There is also an indication that the

basic aerodynamic modeling is satisfactory because of the agreement in collective

position (�75) at the design cruise velocity. With these correlations, the dynamic

system stability in cruise 
ight with the elastic wing included is now compared.

The dynamics of the baseline wing and rotor system are illustrated in Fig. 8.13

which is a root locus plot comparing the results presented in reference 31 to those

of the present analysis. The range of velocity sweep in this plot is from 0 to 400

knots. The two 
ap modes �+1 and ��1 are the �xed-system eigenvalues for the

gimbal 
ap motion while the � 
ap mode is the elastic coning motion. The �xed-

frame elastic 
ap modes are not shown since comparable results are not available

from reference 31. Modes with frequencies greater than 3/rev are also not shown.

The root locus plot shows good agreement for both the frequency and damping of

the modes, and similar movement as a result of the velocity sweep. The largest

discrepancy between the two analyses is that the low frequency lag mode (��1) in
the present analysis couples strongly at low velocity with the wing beam mode as

those frequencies cross. This does not occur with the analysis of reference 31. A

closer examination of damping in the wing modes is shown in Figs. 8.14 and 8.15.

The plot of Fig. 8.14 shows predictions of the wing beam mode damping ratio as a

function of velocity (airplane mode), and includes full-scale experimental results as

reported in reference 31. Whirl 
utter is predicted to occur at about 305 knots by

the analysis of reference 31, and at about 285 knots by the present analysis (about

7 percent di�erence). The damping ratio predictions are not in good agreement

over the entire velocity sweep because the damping ratio of the present analysis

has a spike which occurs when the ��1 mode couples with the wing beam mode.

This transfer of damping from the rotor lag motion to the wing beam mode when
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the frequencies of those modes cross agrees with results discussed previously in

Chapter 2. The wing beam mode damping ratio predictions of both analyses agree

satisfactorily with the experimental data. Damping of the wing chord and pitch

modes is shown as a function of velocity in Fig. 8.15. The damping predictions are

shown to agree well near the velocities at which these modes become unstable.

Further validation of the present analysis is o�ered by observing predictive

changes resulting from rotor parameter variations. An important parameter in

tiltrotor dynamics, which will be discussed in more detail in the following sections

of this chapter, is the rotor precone. As the rotor precone is lowered, the wing beam

bending mode damping is observed in Fig. 8.16 to increase at higher velocities (ex-

panding the 
utter envelope). This trend is predicted by both of the analyses.

Variation of the blade torsional frequency also has a signi�cant e�ect on tiltrotor

dynamics. The predicted trends for damping of the wing-beam mode with increase

in blade torsional frequency are shown in Fig. 8.17. Similar trends are observed

between predictions of the two analyses, but di�erences in the 
utter velocity grow

with increases in the blade torsional sti�ness. These di�erences are attributable to

the di�erence in modeling of the negative pitch-lag coupling associated with rotor

precone. In the analysis of reference 31, the pitch-lag coupling is estimated from

basic uncoupled-torsion dynamics and is modeled as a kinematic feedback param-

eter while, in the present analysis, the pitch-lag coupling is a natural occurance of

the elastic blade dynamics.

Because the torsional dynamics do have a signi�cant e�ect on the wing damp-

ing, it is also necessary to investigate the e�ects of the torsional modes which di�er

for the two baseline designs. Recall from previous discussion that the rigid body

mode used in the analysis of reference 31 must be omitted in the present analy-

sis in favor of an accurate modeling of the �rst elastic torsion blade mode. The

rigid-body mode can be simulated in the present analysis with a torsion spring
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and torsionally-sti� outboard beam sections. The di�erence in wing beam mode

damping associated with each torsion model, the rigid-pitch mode at 4.8/rev and

the �rst-elastic torsion mode at 5.7/rev, are shown in Fig. 8.18. The 
utter ve-

locity associated with the rigid torsion case is shown to be about 5 percent lower

than that associated with the 1st elastic mode case.

8.2.3 Stability in Helicopter, Conversion, and Airplane

Modes

The capabilities of the present analysis are assessed in helicopter, conversion, and

airplane modes using a cantilevered elastic wing and elastic blade rotor model.

Some additional input parameters for this model are illustrated in Fig. 8.19 which

were reported in reference 31.

The conversion corridor extends from aircraft velocities of about 90 knots to

about 170 knots. Up to 90 knots, the wing is near stall and the rotors provide

the necessary lift forces. The pylon orientation is at or near 90 degrees until the

lower conversion bounds is reached. The pylon then begins to rotate over, reaching

zero degrees by the time the aircraft reaches about 140 knots. Rotor rotation rate

is held constant during this period. Once the pylon is fully converted, the rotor

rotation speed is then dropped for high-speed cruise 
ight, which is generally 15 to

20 percent less then the hover rotor speed. There is a signi�cant drop in the rotor

disc loading (CT=�) in moving from hover into airplane 
ight which has a signi�cant

impact on the tiltrotor pitch dynamics as will be discussed later in this chapter.

The rotor model of the present analysis was trimmed to the disc loading illustrated

in Fig. 8.19 at several velocities. The rotor speed and pylon angles, also illustrated

in the �gure, were input for each velocity point as well. Notice the abrupt change in

rotor rotation rate from 563 rpm in helicopter mode to 458 rpm in cruise mode over

a velocity range of about 20 knots. This change represents a rotor speed ratio of
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1.23 used in helicopter mode because the nondimensional input parameters for the

present rotor model were based on the cruise rotor speed. The trimmed collective,

as calculated by the present analysis and as reported in reference 31, are illustrated

as a function of velocity in Fig. 8.20, and the associated damping of the wing modes

are illustrated in Fig. 8.21. The data reported in reference 31 for these two plots are

based on a constant rotor speed (no rotor speed perturbation degree-of-freedom)

and no blade torsion degree-of-freedom. These assumptions have an in
uence on

the results, so the validity of comparing these particular results with the present

analysis calculations are suspect. However, as these are the only such results

available in helicopter and conversion mode operation for this tiltrotor model,

the comparison is attempted. The trimmed-collective settings shown in Fig. 8.20

are similar, with the present analysis generally predicting about 2� to 5� higher

collective. The higher collective predicted by the present analysis is attributed to

the torsional 
exibility of that model. The wing modes damping trends shown in

Fig. 8.21 also show agreement considering the di�erence in analytical assumptions

used in obtaining these results.

8.2.4 Performance

The plots of Figs. 8.22 and 8.23 compare the performance predictions of the present

analysis to results of full-scale XV-15 
ight tests for hover and cruise 
ights, re-

spectively. This comparison is valid because of the similarity of the present analysis

rotor model to the XV-15 rotor system. The test data are taken from reference 90.

The hover measurements are for an isolated XV-15 rotor system (no wing/body in-

terference e�ect). The present analysis is shown in Fig. 8.22 to agree well with the

test data for the hover �gure of merit. Maximum error is about 4 percent which is

less than the variation of the test data. A Gessow-Meyers [91] in
ow distribution

was used for the hover analysis. One might note that the �gure of merit is generally
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much higher for a tiltrotor aircraft than for a conventional rotorcraft because of the

high disc loading for a tiltrotor. Thus, the pro�le power is a smaller percentage of

the total power required to hover, so the tiltrotor hover e�ciency is less sensitive

to airfoil drag characteristics than conventional helicopters. Based on the gross

design weight of the XV-15, the CT=� is .1145 at sea level. The predictions for

cruise propeller e�ciency, shown in Fig. 8.23, also agree well with the test results

at low disc loadings, but the analysis slightly under-predicts the e�ciency at high

disc loadings. The 
ight test data also re
ect the large changes in velocity required

to achieve the various disc loadings. The predictions di�er from the experimental

results by at most 8 percent which is also about the range in variation of the test

data. A typical operating point for the XV-15 is at CT=� = :05 [90].

8.2.5 Free-Flight Trim and Blade Loads

The �nal part of the validation section addresses capability of the analysis to

predict free-
ight trim conditions and blade loads. As mentioned previously, the

present analysis does not yet have the capability of assessing stability for free-


ight because the fuselage degrees of freedom are not yet included in the stability

analysis. Additional parameters required to develop the free-
ight model are given

in reference 13, and are listed in nondimensional form in table 8.1. The trim values

obtained with the present analysis are illustrated in Fig. 8.24. Here, the tiltrotor

in helicopter mode is shown to have a forward (nose-down) tilt of the fuselage and

forward tilt of the tip path plane (indicated by cyclic pitch �1s). Each of these

tilts increases with velocity to increase thrust in the forward-
ight direction. The

collective pitch remains about the same because the wing loading decreases the

rotor thrust requirement about the same amount that the forward tilt increases

the rotor thrust requirement. As forward 
ight velocity continues to increase, the

pylon angle is lowered which greatly decreases the tilt of the fuselage and tip-path
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plane. The collective angle also decreases because of the increased 
ow through

the rotor with the increased shaft tilt. As the in
ow continues to increase, the

collective trend eventually reverses as larger collectives are required to maintain

a positive blade angle of attack on top of the larger in
ow angles. This is true

in spite of the decreased thrust requirements from the rotor as the aircraft begins

to enter airplane 
ight mode. The horizontal tail controls of the aircraft become

dominant in maintaining pitch moment equilibrium, so cyclic is no longer required

to produce nose-down moment. However, the cyclic pitch in conversion mode must

increase with velocity because of the large edgewise 
ow through the rotor system.

Without cyclic control here, a large fuselage-pitch-up moment would be created

by the rotor system. As the pylon angle approaches zero degrees (airplane mode),

the cyclic pitch quickly falls to zero while the collective continues to increase with

the in
ow. The fuselage pitch angle is shown to fall to about zero degrees as

the 3 degrees of wing incidence provides adequate lift in high speed 
ight. While

the control sequence described above seems plausible, no controls data from 
ight

tests could be found for comparison. The data shown previously in Fig. 8.20 for

the collective angle of a cantilevered wing and rotor system is closely related to

the collective trim controls of the free-
ight analysis shown in Fig. 8.24.

Blade loads associated with the above trim conditions are illustrated in Fig. 8.25,

and are compared with 
ight test data of the XV-15 reported in reference 90. The

test data were obtained at r=R = 0:35 while the analysis shows calculations at

r=R = :40 because of modeling considerations. The trend of increasing vibratory

blade bending moment with velocity for helicopter and conversion modes are pre-

dicted by the present analysis. The actual values agree well for part of the lower

end of the velocity range considered at each pylon angle, but in general the an-

alytical bending moments increase at a faster rate than the experimental results.

This rate is decreased for the 30� pylon angle because the rotor speed decreases
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from 563 rpm to 458 rpm over the velocity range considered. In airplane mode

(0� pylon angle) the vibratory loads are much smaller because there is little or

no edgewise 
ow and cyclic controls are nearly zero. The predicted vibratory mo-

ments therefore approach zero. The larger 
ight test moments for this mode are

attributed to nonuniform air
ow about the rotor azimuth such as may be caused by

wing/fuselage interference, gusts, or a non-straight-and-level 
ight path. It should

be noted that some of the analytical beam-bending results shown in Fig. 8.25 are

sensitive to the selection of the horizontal-tail incidence angle which may vary from

0 to 6 degrees. This angle was not precisely known for any particular 
ight condi-

tion. The curves associated with the conversion angles can be shifted by about 5

knots in either direction based on selection of the horizontal-tail incidence angle.

8.2.6 Summary of Validation Results

The results of the validation section show that the present analysis is reasonably

accurate in predictions of loads, performance, and stability for an elastic-blade,

gimballed, baseline tiltrotor. Important e�ects related to the elasticity of the blade,

such as the precone/torsional-sti�ness in
uence were also shown to be accurately

predicted. Results from Chapter 3 showed that the elastic rotating beam model

was accurate in predictions of frequencies for elastically-coupled rotor blades. Com-

bining the results of the present chapter with those of Chapter 3, it is reasonable

to assume that the present analysis will accurately predict loads, performance, and

stability of tiltrotors with elastically-coupled rotor blades.

8.3 Bending-Twist-Coupled Rotor Blade

The present section focuses on means for increasing the velocity at which tiltrotor

whirl 
utter occurs in high-speed airplane-mode 
ight. Many of the parameters
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which in
uence whirl 
utter were examined in Chapter 2. This chapter did not,

however, consider the elasticity of the rotor blade which has been shown to greatly

in
uence tiltrotor stability characteristics. Important blade parameters which af-

fect stability are the rotor precone and blade torsional sti�ness. The potential for

using a bending-twist-coupled rotor blade to o�set the adverse precone e�ect is

examined in the present section.

8.3.1 Precone E�ect

The baseline cantilevered wing and rotor system instability was shown in the previ-

ous section to be de�ned by the wing-beam-bending-mode damping. Instability of

this mode is shown in Fig. 8.16 to occur at higher velocities (expanding the 
utter

envelope) as the rotor precone is lowered. Similarly, the instability of this mode

is shown in Fig. 8.17 to occur at higher velocities as the blade torsional sti�ness

is increased. The cause of these trends is the coupling of the elastic blade lag and

pitch motions due to the rotor precone. This adverse e�ect is clearly explained in

reference 31, but must to some extent be repeated here for completeness.

Consider the rotor system in hover. Here the rotor disc loading is high, so

to o�set large blade bending moments, rotor precone is introduced. As shown in

Fig. 8.26a, the precone gives a component of centrifugal force which opposes the

lift force. With ideal precone these forces balance, and there is no net bending

moment imposed on the rotor blade (at least for some desired spanwise location

on the blade). Now, consider the rotor system in airplane cruise. The disc loading

is shown in Fig. 8.19 to decrease by an order of magnitude compared to the hover

value. The centrifugal force component perpendicular to the blade also decreases

because of the lowered rotor speed in cruise, but only by about 66 percent ( 1
1:232

).

Thus, in cruise there is a signi�cant imbalance of centrifugal force tending to bend

the rotor blade back (
ap down). This imbalance creates a torsion moment about
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the blade inboard sections proportional to the lag bending de
ection as illustrated

in Fig. 8.26b.

Now consider the static torsion balance of the rotor blade. The net 
ap moment

due to aerodynamic and centrifugal forces has a torsional component proportional

to lag which must be balanced by the blade torsional sti�ness:

M�� + I�!
2
�� = 0 (8:1)

where M� is the net bending moment nondimensionalized by I�

2, � is the lag

de
ection nondimensionalized by R, I� is the torsional inertia nondimensionalized

by I�, !� is the torsional frequency nondimensionalized by 
, and � is the local

torsional de
ection. If the blade is considered to be semi-rigid such that the lag

and torsional de
ections occur at the root of the blade, then an e�ective kinematic

pitch-lag coupling term can be de�ned as

KP� = ��
�
=

M�

I�!
2
�

(8:2)

where KP� > 0 gives lag-back/pitch-down coupling. The 
ap moment at the blade

root is given by

M� = 


Z
L

ac
rdr � �p � �trim (8:3)

where L is the blade lift at a given spanwise position, �p is the precone angle, and

�trim is the elastic coning angle. In hover, the precone is selected to balance the

lift so M� is small and KP� is small. In cruise, the precone term dominates so the

kinematic pitch-lag coupling can be estimated by:

KP� =
�p

I�!
2
�

(8:4)

Therefore, the precone and torsional sti�ness determine the pitch-lag coupling,

and this coupling happens to have a signi�cant e�ect on tiltrotor stability in high-

speed 
ight. The e�ective kinematic coupling of the baseline system is estimated

in reference 31 to be -0.3 which is considered a high value.
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In the present analysis, there is no need to estimate kinematic pitch-lag cou-

pling. The equations of motion derived in Chapter 4 include the precone e�ect

naturally as part of the elasticity of the rotating beam.

8.3.2 Positive Pitch-Lag Coupling

From the discussion of the previous section, it seems rather obvious that if posi-

tive pitch-lag coupling were introduced into the rotor system to o�set the negative

pitch-lag coupling introduced by rotor precone, then the stability characteristics

would improve. There are two methods which may readily be used to introduce

positive pitch-lag coupling (lag-back/pitch-down): kinematic coupling in the con-

trol system and elastic bending-twist coupling in the rotor blade.

Certain aspects of kinematic coupling in the control system may limit use of

this approach, at least for sti�-inplane rotor systems such as the baseline gimballed

rotor system. The virtual lag hinge of sti�-inplane rotor systems can be well

removed from the control attachment point (pitch bearing location) of the blade

such that the lag de
ection experienced at the control system is very small. This

may be a problem with tiltrotors since the blades are short and sti� to begin

with. With lag de
ections at the control system small compared to outboard

lag de
ections, the control system pitch-lag coupling will not be able to compete

with the precone e�ect. The elastic lag de
ection of the baseline rotor blade is

shown in airplane mode at the normal cruise velocity in Fig. 8.27. It is shown that

the lag de
ection anywhere inboard of 30 percent is an order of magnitude less

than the de
ection at the tip, and the virtual lag hinge is at about 40 percent.

Thus, the lag de
ection associated with the control system (located at about 10

percent) is much smaller than the lag de
ection associated with the precone e�ect

(a summation of lag de
ections along the blade span). Another adverse aspect of

using the control system to create positive pitch-lag coupling is the constraints on
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control system parameters for rotor 
apping and handling qualities. The manner in

which the control system is used to obtain kinematic pitch-lag coupling is to alter

the pitch horn cant angle, pitch link cant angle, pitch bearing spanwise location,

pitch horn length, or radial location of the pitch horn to pitch link attachment

point so that elastic lag motion will create blade pitch. The geometry of these

parameters is illustrated in Fig. 8.28. The problem associated with changes in

the control system is that these parameters also control the pitch-
ap coupling of

the rotor system which is generally set to constrain rotor 
ap motion. Handling

qualities will also be in
uenced by the control system changes which introduces

additional constraints on the amount of pitch-lag kinematic coupling which may

be obtained for the system.

The addition of pitch-lag coupling through design of a bending-twist-coupled

rotor blade has some advantages as well as disadvantages as compared to the

control system approach. The disadvantage is that an entirely new rotor blade

must be designed which may have di�erent frequencies compared to the baseline

design, and the blade design must incorporate anisotropic layups of composite

materials for which there is relatively little experience in usage at a production

level. Because of the large built-in twist of tiltrotor blades, it is not possible

to decouple structural lag-bending-twist and 
ap-bending-twist, so both pitch-lag

and pitch-
ap couplings exist simultaneously. For gimballed systems, this is not a

problem because the fundamental 
ap mode is the gimbal-
apping mode which is

una�ected by the elasticity of the blade. Thus, an advantage of the bending-twist-

coupled rotor blade is that gimbal 
apping is uncoupled from the pitch-lag coupling

which is not the case for the control system approach. Another advantage of the

bending-twist-coupled blade approach is that the pitch-lag coupling is proportional

to the local lag de
ection rather than the lag de
ection at one particular inboard

section. The amount of positive pitch-lag coupling which can be created should
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therefore be on the order of that associated with the precone e�ect.

The basic concept of a bending-twist-coupled rotor blade used in tiltrotor cruise

mode is illustrated in Fig. 8.29. An untwisted blade is used in the diagram to clar-

ify the deformations. The collective pitch in tiltrotor cruise (V=
R) is about 46� at

the 75 percent spanwise station. At the 40 percent location of the virtual lag hinge,

the pitch angle due to blade twist is 11� higher, so for purposes of illustrating the

bending-twist-coupled rotor blade on an untwisted blade, the blade chord is ro-

tated to 57� with respect to the plane of rotation. Now, de�ne 
atwise bending as

bending of the rotor blade in a plane perpendicular to the chord. On conventional

helicopters this is referred to as 
apwise bending (bending perpendicular to the

plane of rotation). For the present con�guration it is seen that 
atwise bending

has a larger inplane (in the plane of rotation) component than out-of plane (
ap-

wise) component. Therefore, to create pitch-lag coupling in the rotor system, the

blade should be 
atwise-bending-twist coupled. Chordwise-bending-twist coupling

can also contribute, but as velocity and, therefore, collective increase, this elastic

coupling would have a diminishing e�ect on pitch-lag coupling.

The manner in which 
atwise-bending-twist coupling may be introduced into

a rotor blade is addressed next. An anisotropic layup of o�-axis composite plies

in the primary structure of the blade is one of the most e�ective ways to create

this type of elastic coupling. A simple truss analogy is shown in Fig. 8.30 to help

explain exactly why bending-twist coupling is created with o�-axis composite plies.

As shown, a rotor blade section is assumed to be composed of a composite laminate

rotated o�-axis in the same direction on both the upper and lower surfaces. at a

particular section of the blade undergoing 
ap-down bending, the bending moment

can be translated into a force-couple such that the upper surface has a tension force

and the lower surface has a compressive force. Looking only at the upper surface,

the composite material may be modeled as a simple truss with two crossing rod
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members. One rod is extensionally-sti� and represents the �ber direction, and the

other rod is extensionally 
exible and represents the matrix direction. A tension

force on this model can be seen to not only extend the truss, but also to shear it

in the direction of the 
exible rod member. The shear strains are consistent along

the entire upper surface of the airfoil, creating a shear 
ow which tends to twist

the blade nose-down. The lower surface is in compression rather than tension.

The material �ber direction on this surface is the same as the lower surface, so

in compression the shear 
ow is in the opposite direction from the upper surface,

and also produces nose-down twist. The bending-twist coupling illustrated in the

�gure is 
atwise-bending-up-nose-up which is just the opposite of what is desired

for the tiltrotor blade to o�set the precone pitch-lag e�ect. Flatwise-bending-

up-nose-down coupling is created by reversing the �ber angles illustrated in the

diagram.

8.3.3 Investigation of Bending-Twist-Coupled Blades

To develop guidelines for realistic magnitudes of bending-twist coupling, a NACA

0012 airfoil section composed entirely of graphite/epoxy composite weave material

is considered. The airfoil cross section, illustrated in Fig. 8.31, is shown to have a

chord length the same as that the baseline tiltrotor blade. The laminate material

properties are listed in table 8.2, and the laminate thickness is selected to give


atwise-bending sti�ness and torsional sti�ness within range of the baseline blade

when the material plies are oriented at 0� ( the cross-ply of the weave would be at

90�). There are approximately 18 plies of weave material in the laminate as shown

in Fig. 8.32. Here, two cases to be considered are illustrated. In case 1 the entire

laminate may be rotated o�-axis at an angle labeled �. In case 2 only half the

plies (every other laminate) may be rotated o�-axis at an angle labeled � while all

the remaining laminates (designated �) stay at 0�. Case 2 is considered to add the

281



reality of structural constraints which may limit the amount of primary structure

which can be used to create bending-twist coupling. The 
atwise and torsional

sti�nesses are plotted as a function of o�-axis ply angle, �, in Fig. 8.33. This

plot shows that the 
atwise and torsional sti�nesses associated with both cases are

within the range of those respective sti�nesses associated with the baseline blade.

The range of the sti�nesses of the baseline account for variations of the sti�nesses

from about 40% span out to the tip. The tendency for increases in ply angle is

to reduce the 
atwise bending sti�ness and increase the torsion sti�ness. At high

ply angles the bending and torsion sti�nesses of the composite blade models are

shown to leave the baseline range, which is an indication that the blade sti�nesses

may create a structural or dynamic problem. The magnitude of the bending-twist-

coupling sti�ness increases with ply angle until reaching a peak at about 25� as

shown in Fig. 8.34. The location of the peak makes sense because the coupling is

zero at 0� and 45�. One would then expect a maximum about half way between

these two points. A convenient way to characterize the magnitude of the bending-

twist coupling is to relate it to the bending and torsion sti�nesses to which it is

related. To this end, a coupling parameter is de�ned as

� =
K34

EIf +GJ
(8:5)

where K34 is the 
atwise-bending-twist coupling sti�ness. This parameter relates

the amount of bending-twist coupling that can realistically be designed into a blade

to the bending and torsional sti�nesses themselves. As the amount of bending or

torsion sti�ness increases, it is easier to add a greater magnitude of coupling into

the design, and this is re
ected by the coupling parameter. A plot of the coupling

parameter � is shown as a function of ply angle for the two composite blade cases

in Fig. 8.35. This plot is very similar to that of Fig. 8.34, indicating that the

parameter is consistent with magnitude of coupling in the blade, even though the

bending and torsion sti�nesses are changing as the ply angle increases. A realistic
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value for the coupling parameter can be determined by comparing the plot of

Fig. 8.33 with that of Fig. 8.35. Figure 8.33 shows that for case 1 the sti�nesses

leave the baseline range at a ply angle of about 12�, and for case 2 the sti�nesses

leave the baseline range at a ply angle of about 20�. Using these respective angles

as constraints, from Fig. 8.35 the coupling parameter is limited to � = :25 for case

1 and to � = :12 for case 2. These numbers may then be used as guidelines for

preliminary design of a rotor blade based on a set of baseline uncoupled sti�nesses.

The coupling parameter of case 1 shows the upper limit of how much coupling can

be added to the blade without signi�cantly altering its baseline characteristics.

The coupling parameter of case 2 is a more conservative number which accounts

not only for the constraints of case 1, but also for the likelihood that all structure

in the blade cannot be used to create coupling.

The in
uence of 
atwise-bending-twist coupling on the stability of the baseline

system was then investigated. The coupling parameters are used to de�ne the


atwise-bending-twist coupling sti�ness distribution of the baseline blade based on

the baseline classical beam sti�nesses. The classical beam sti�nesses themselves

are not altered, so the baseline blade frequencies are retained. This procedure

isolates the in
uence on stability by the addition of elastic coupling into the blade.

The plot of Fig. 8.36 shows the damping of the wing beam mode damping as a

function of velocity for three value of the coupling parameter. The baseline design

is uncoupled, so � = 0 for this case. For the remaining two cases the indicated

value of � and the baseline 
atwise-bending and torsion sti�nesses were used to

calculate K34 at each blade station outboard of 40% span. There was no structural

coupling for the inner 40% span because it may be desirable not to have coupling

in the high-stress root section. The velocity at which the system becomes unstable

is shown to increase with the magnitude of coupling. The 
utter velocity of about

250 knots is increased to about 360 knots at � = :10, an increase of 44 percent. The
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plot of Fig. 8.37 illustrates the sensitivity of 
utter velocity to the point at which

coupling is initiated (blade coupled from initiation point out to tip). This plot is

based entirely on the � = :05 coupling. The baseline design is, again, uncoupled

so the initiation point is given a value of r/R = 1.0. The previously obtained

result is established at r/R = 0.4, and the 
utter velocity increases. Reduction of

the initiation point to r/R = 0.2 is shown to greatly increase the 
utter velocity,

indicating that the coupling has the greatest e�ect at the inboard sections of the

blade. This result seems reasonable considering that the bending slope for the

fundamental bending mode has the greatest values in this section of the blade.

The increase in 
utter velocity for this case is about 56 percent over the baseline

design.

Although no kinematic pitch-lag coupling is considered in the present analysis,

it is possible to calculate an e�ective kinematic coupling based on the elastic twist

of the blade tip. The kinematic pitch-lag coupling then becomes a function of

velocity because of the change in collective pitch, which places increasingly more

of the 
atwise-bending in the lag direction. The e�ective pitch-lag coupling was

calculated based on an untwisted version of the baseline blade, and the results are

plotted in Fig. 8.38. The e�ective coupling associated with the � = :05 case (40%

initiation) is shown to be on the order of 0.3 which is considered a large value, and

has about the same magnitude as the negative pitch-lag coupling calculated for

the precone e�ect in reference 31. The e�ective kinematic pitch-lag coupling for

the � = :10 case is even larger, reaching a maximum of about 0.8. Thus, very large

values of pitch-lag coupling can be obtained using elastic 
atwise-bending-twist

coupling in the rotor blade.

The impact of bending-twist coupling on tiltrotor performance and blade loads

is investigated next. The cruise performance in airplane mode at V=
R = :7 is

plotted as a function of disc loading in Fig. 8.39. While an untwisted blade is shown
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(as a reference) to have an adverse e�ect on cruise performance, the bending-twist-

coupled blade is shown to have the same performance as the baseline blade. The

hover �gure of merit is plotted as a function of disc loading in Fig. 8.40. Here,

the untwisted version of the baseline blade is shown to have slightly improved

performance over the baseline blade. The bending-twist-coupled blade has virtually

the same performance as the baseline with slightly better �gure of merits at low

disc loadings and slightly lower �gure of merits at high disc loadings. Root bending

moments in the lag and 
ap directions are plotted as a function of azimuth station

in Fig. 8.41. The 
ight mode here is conversion with the pylon at 75� and a velocity

of 100 knots. The bending moments predicted for the coupled and baseline blades

are shown to be virtually the same for both directions.

From the previous discussions of this section, the use of 
atwise-bending-twist-

coupled blades are shown to have a very favorable in
uence on stability without

creating adverse e�ects on performance or blade loads. The potential impact of

coupling on blade dynamics and strength have been avoided in the investigation

by considering only magnitudes of elastic coupling which can be obtained without

signi�cant changes in baseline sti�ness properties.

8.4 Extension-Twist-Coupled Rotor Blade

This section focuses on means for improving tiltrotor performance through passive

blade twist control. The twist distribution of a blade is altered by elastically

coupling the blade extension and twist modes. Extension-twist coupling is e�ective

for tiltrotors because in changing from hover to forward 
ight there is a signi�cant

decrease in rotor speed and a signi�cant increase in in
ow through the rotor disc.

The large change in in
ow makes it desirable to have a change in twist distribution

so that more of the blade span is maintained at an optimum angle of attack. The

large change in rotor speed provides a mechanism, the change in centrifugal force,
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by which to alter the twist using extension-twist coupling.

8.4.1 Optimum Twist Distributions

The twist distribution of the baseline tiltrotor blade is the same as that of the XV-

15 and is plotted in Fig. 8.1. This twist distribution is based on a compromise of the

twist desired for hover and that design for high-speed cruise. An investigation of the

optimum twist distribution for each 
ight mode, hover and cruise, was performed

based on both linear and nonlinear distributions. One di�culty encountered with

this investigation was the classi�cation of the nonlinear twist distribution. The

baseline twist distribution is nonlinear, but can be accurately approximated by a

series of two linear distributions joined at the 40% radius. The nonlinear twist

distribution is then de�ned by the baseline twist from 0 to the 40% span followed

by a linear twist rate from 40% to the blade tip. The linear approximation of

the baseline twist outboard of .4R is 30�=R (18� over a span of .6R). It should

be noted that all twists and twist rates are de�ned as positive for nose-down

twist (moving from root to tip). A plot of the power required for cruise is shown

in Fig. 8.42 as a function of twist rate for both the linear and nonlinear twist

distributions. The power required is shown as a percentage change relative to

the baseline (XV-15) power required, with a negative change indicating improved

performance. The performance associated with the nonlinear twist distribution

is shown to match that associated with the baseline XV-15 twist at 30�=R as

expected. The optimum nonlinear twist is shown to improve performance by only

one percent at a rate of 42�=R while the optimum linear twist distribution is shown

to improve performance by one-half percent at about 50�=R. From these results

it appears that the baseline twist is very close to an optimum value for cruise,

and that a nonlinear twist distribution is only slightly more desirable, from a

performance standpoint, than a linear twist distribution.
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A plot of the power required for hover is shown in Fig. 8.43 as a function

of twist rate for both the linear and nonlinear twist distributions. Again, the

power required is shown as a percentage change relative to the baseline (XV-15)

power required, with a negative change indicating improved performance. The

performance associated with the nonlinear twist distribution is shown to match

that associated with the baseline XV-15 twist at 30�=R as expected. The optimum

nonlinear twist is shown to improve performance by about six percent at a twist

rate of 12�=R while the optimum linear twist distribution is shown to improve

performance by about 11 percent at a twist rate of 25�=R. From these results

it appears that the baseline twist is very far from an optimum value for hover,

and that a linear twist distribution is much more desirable, from a performance

standpoint, than a nonlinear twist distribution.

8.4.2 Design of Extension-Twist-Coupled Blades

It is di�cult to de�ne an extension-twist-coupled rotor blade in terms of the base-

line tiltrotor blade because there are several aspects of this coupling that require

non-traditional design methodology. De�nition of an axial sti�ness for a rotor

blade, as is required for this type of coupling, is itself non-traditional. In most

rotorcraft analyses, rotor blades are assumed to be rigid in extension. The in-

troduction of extension-twist elastic coupling also creates bending-shear coupling

between the two bending directions. For example, the bending sti�ness in the


atwise-bending plane is coupled to the shear sti�ness in the chordwise-bending

plane. The bending-shear coupling, as shown in Chapter 3, signi�cantly reduces

the e�ective bending sti�ness of the structure. Unless high sti�ness laminates are

used e�ciently in the blade primary structure, it is unlikely that the extension-

twist-coupled blade design can maintain baseline bending sti�ness values, and still

achieve desired twist deformation goals. By e�ciency here it is meant that all
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or most of the primary structure must contribute to the desired coupling e�ect.

Another di�erentiating aspect of the extension-twist-coupled blade design is an

increase in blade tip-mass. An increase in blade tip-mass is necessary to increase

the centrifugal forces which act as the twist deformation mechanism. With both

increased tip mass and bending-shear coupling, the fundamental frequencies of an

extension-twist-coupled blade almost certainly must deviate from that associated

with the baseline rotor blade.

Representative guidelines for establishing sti�ness properties of an extension-

twist-coupled blade are based on the same Gr/E material used for the bending-

twist-coupled blade and the same cross section model shown in Fig. 8.31. The

laminate thickness is reduced by one-half in order to reduce the extension sti�ness

to values which can be e�ective in an extension-twist-coupled blade. The laminate

considered is shown in the top of Fig. 8.32, except only half the plies exist in the

present model (9 instead of 18 plies). For an extension-twist coupled blade, the

laminate on the lower surface is rotated in the opposite direction to the laminate

on the upper surface, so it is understood that an angle oriented at +� on the

upper surface is opposed by a laminate oriented at �� on the lower surface. Based

on these assumptions, the 
atwise-bending and torsion sti�nesses associated with

an extension-twist-coupled blade are plotted as a function of o�-axis ply angle

in Fig. 8.44. This plot shows that the 
atwise-bending sti�ness is reduced by a

factor of about one-half to one-third that obtained for the baseline and bending-

twist-coupled blades. The torsional sti�ness is also lowered, but remains in a

range close to that used in the baseline blade. Extension and extension-twist-

coupling sti�nesses are plotted as a function of o�-axis ply angle in Fig. 8.45.

The extension-twist-coupling sti�ness reaches a maximum around 22.5�, and the

extension sti�ness is seen to drop rapidly with increases in the ply angles. Realistic

values of coupling sti�ness are not extracted from the baseline blade sti�nesses,
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as was the case for the bending-twist-coupled blade, and instead are derived from

the airfoil cross section model itself. The problem here is that the rotor system

frequencies will change, but the frequencies of the rotor blade will change anyway

with the addition of tip mass (as is required to obtain large twist changes). The

loss here is that deviations from the baseline sti�ness values will create unknown

deviations in the stability of the system simply from changes in blade frequencies.

The e�ect on stability of adding the extension-twist-coupling alone will not be

known.

An analytical model of an extension-twist-coupled blade is based on the cross

section model discussed in the previous paragraph. The blade sections outboard

of 20 percent span are considered to be elastically coupled while the blade section

inboard of 20 percent span is considered to be uncoupled and built up to withstand

high loads. The sti�ness values for the coupled sections of the blade are obtained

for a laminate ply angle of � = 20� because of the large amount of extension-

twist-coupling obtained at this angle. The extension sti�ness associated with this

ply angle is 232 which is the value used for the coupled blade sections. For the

uncoupled root section, this sti�ness is increased to 500. The extension-twist

sti�ness K14 can reach as high as .5 as shown in Fig. 8.45, but to account for

reductions in coupling due to uncoupled structural components in the cross section,

a conservative value of -.2 is used in the coupled sections of the blade model (the

negative sign gives the proper direction for the desired twist deformation as shall

be discussed shortly). The chordwise and 
atwise bending sti�nesses are set to

one-half of the baseline values shown in Figs. 8.5 and 8.6, respectively. Torsional

sti�ness by the guideline is about .0022, a low value which is desirable for obtaining

large twists. The torsional sti�ness for the analytical model is set at .0044 using

the conservative approach adopted for the coupling sti�ness. Values for the root

element of the analytical model (0 - .2 r/R) are unchanged from the baseline case.
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With the sti�nesses now established for the extension-twist-coupled blade, the

amount of twist deformation can only be further increased with additional tip

mass. To maintain realistic values for the tip mass, the mass contribution of a

steel tip mass with a cross section of 15 in2 is determined as a function of its

length. A plot of the running mass at the blade tip versus the tip mass length is

shown in Fig. 8.46. The �nite element model assumes a linear distribution over

the blade segment so the value of the running mass at the tip node is about twice

what the value would be if it were constant over the segment. The weight added

to the blade is also shown in the plot. Reasonably large twists were obtained using

tip mass values of 8 to 12 which are shown to add between 19 and 26 pounds per

blade (114-156 lbs. to total system). Three extension-twist-coupled blade cases

were considered for the present investigation. Each case di�ered only by the tip

mass value, using 8, 10, and 12, respectively. The mass distributions for the three

cases are plotted in Fig. 8.47.

The twist design of the three extension-twist-coupled blade cases is considered

next. For the twist design, the optimum twist distribution for cruise mode will be

obtained as determined from Fig. 8.37. This is done because airplane cruise mode

is generally considered the more important 
ight mode, where the most time in


ight is spent, and is thus where optimum e�ciency is required. The optimum twist

distribution for this 
ight mode (as de�ned by the rigid blade study) is obtained

by calculating the elastic twist at the cruise rotor speed, and adding this twist

to the the undeformed (zero rpm) twist distribution. The twist distributions of

the three extension-twist cases are compared to the baseline twist distributions for

cruise mode in Fig. 8.48 and for the undeformed (starting) condition in Fig. 8.49.

The twist distributions of the three extension-twist cases in cruise mode are shown

to be identical as expected, with a twist rate in the outboard sections just slightly

higher than the baseline twist distribution. Little deviation from the baseline twist
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distribution was expected because the baseline twist was shown in Fig. 8.36 to be

very close to an optimum for performance. The undeformed twists for the three

cases demonstrate the increase twist associated with increased tip mass. Compar-

ing Figs. 8.48 and 8.49, one can determine that twist deformations obtained at

the blade tip are 12, 16, and 22 degrees for the tip-mass cases of 8, 10, and 12,

respectively. The twist distributions obtained for the hover mode are illustrated

in Fig. 8.50. Here, the twist distributions do not follow a consistent pattern where

the twist rate on the outboard end (the untwisting) becomes increasingly smaller

with increased tip-mass as one might expect. The centrifugal 
attening (propeller

pitching moment) works against the extension-twist coupling, attempting to fur-

ther twist rather than untwist the blade. This is because the pitch angle of all

the blade sections are positive with respect to the plane of rotation as required to

produce the lift needed from the rotor system in hover. The centrifugal 
attening

e�ect attempts to pitch the outboard sections in a nose-down sense (into the plane

of rotation) which tends to increase the negative twist of the blade. This e�ect

increases with the tip-mass which helps explain why the hover twist distributions

in Fig. 8.50 are as shown.

8.4.3 Investigation of Extension-Twist-Coupled Blades

The performance associated with the hover and cruise 
ight modes are shown for

the three extension-twist-coupled blade cases in Fig. 8.51. Based on the deformed

twist distributions shown in Fig. 8.48 and the performance estimate provided in

Fig. 8.36, the performance of the extension-twist-coupled designs in cruise should

be about the same and should improve relative to the baseline by about one per-

cent. This is indeed shown to be the case in Fig. 8.51. For hover, the performance

improvement should be no greater then 10 percent which is shown to be the im-

provement associated with the optimum linear twist in Fig. 8.37. The actual
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deformed twist distribution obtained for the hover case is close to the nonlinear

twist case shown in that �gure. Based on that curve, and the twist rate for the

outboard blade sections in hover (23-26 deg/R), the performance improvement

should be about 3 to 4 percent. The actual performance improvement predictions

for these cases range from 6 to 7.5 percent with the tip-mass of 10 showing the

greatest improvement. The additional improvements here are attributed to the 
ap

deformation associated with the increased tip-mass over the baseline value. The


ap deformation is in the negative direction since the precone is selected based on

the baseline mass distribution. As the tip-mass increases, the additional centrifu-

gal force bends the blade down which is tantamount to reducing the precone on

the baseline blade. With the blade closer to the plane of rotation the lift is more

aligned with the desired direction of thrust and the e�ciency is increased. The

performance improvement associated with adding tip-mass to the baseline blade

(without extension-twist-coupling) is shown in Fig. 8.52 to be about one percent.

The extension-twist-coupled blades are more 
exible in bending so the performance

improvement due to the tip-mass increase should be even greater for them.

The performance results of Fig. 8.51 are promising, but the stability of the

extension-twist-coupled blades must be investigated next. First, the stability of

the extension-twist-coupled blades without the precone e�ect is considered. The

beam wing mode damping is plotted as a function velocity in Fig. 8.53, and shows

that the velocity at which 
utter occurs is signi�cantly reduced by the increased

tip-mass. One reason for this decrease is the reduced frequency of the wing torsion

mode created by the additional rotor mass. The reduction in torsion frequency

brings the wing beam and torsion mode frequencies closer together which is very

destabilizing as discussed in Chapter 2. Wing frequencies are plotted as a function

of velocity in Fig. 8.54 for three cases of the uncoupled baseline blade. The case of

additional tip-mass added to the baseline blade is shown to decrease the torsional
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frequency much more than the beam frequency. An increase in the wing torsional

sti�ness by 20 percent is shown to increase the wing torsional frequency back to

near its baseline value over most of the velocity range considered. The e�ect on

wing beam mode damping for these cases is shown in Fig. 8.55. Here, the 
utter

velocity is shown to decrease signi�cantly with increased tip mass similar to the

results shown in Fig. 8.53 for the extension-twist-coupled blades. The addition

of wing torsional sti�ness to the baseline plus increased tip mass case is shown

to increase the 
utter velocity by about two-thirds of the di�erence between that

case and the baseline case. These results indicate that most of the reduction in


utter velocity with increases in tip mass is attributable to the change in the wing

torsional frequency.

The additional destabilizing e�ects of rotor precone (�p = 1:5�) are illustrated

in Fig. 8.56 which show that the extension-twist-coupled blades on the baseline

system have very low 
utter velocities. These results are shown for �p = 1:5� in-

stead of �p = 2:5� because the additional blade mass decreases the ideal precone for

hover. These poor results should be expected because of the increase in centrifugal

forces associated with the additional tip mass which, in turn, amplify the precone

e�ect. The precone e�ect will naturally be high in extension-twist-coupled blades

since both the precone and coupling e�ects are highly sensitive to the centrifugal

loads. It seems from these results that an extension-twist-coupled blade set must

have zero or very near zero precone. Whether or not the coupled blades, which

tend to be weak in bending, can survive the increased bending loads associated

with lower precone is another question. The present investigation does not include

a stress analysis, so this question will remain unanswered.

293



Table 8.1: Parameters for the baseline free-
ight model.

Parameter Analysis Variable Value

cW ct/sigma 0.088

Sw wing area 1.08

St tail area .32

Clw lift slope wing 6.0

Clt lift slope tail 6.0

Cdw
1 cd wing .0

Cdt
1 cd tail .0

Cmw cmac wing -.00

Cmt cmac tail -.00

xcgw wing xcg .02

zcgw wing zcg .1

xcgt horiz tail xcg 1.8

zcgt horiz tail zcg .05

�w wing �xed angle 3.0�

�t
2 tail �xed angle 3.0�

cw wing chord .42

ct horiz tail chord .313

fA parasite drag area 0.025

1 Wing and tail drag included in parasite drag area.

2 3.0� nominal, can vary 0 to +6 degrees.
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Table 8.2: Material properties for IM7/3501 Gr/E woven cloth.

Property Value

E11 (psi) 11.64

E22 (psi) 11.64

E33 (psi) 1.62554

G12 (psi) 0.909

G13 (psi) 0.909

G23 (psi) 0.909

�12 0.0466

�13 0.320

�23 0.320

� (pci) 0.05781

tply(in) .014

295



0. .2 .4 .6 .8 1.0

Radial Position, r/R

0

10

20

30

40

Twist,
deg.

-10

Figure 8.1: Baseline rotor blade twist distribution.
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Figure 8.2: Baseline rotor blade elastic axis o�set distributions.
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Figure 8.3: Baseline rotor blade mass and mass radius of gyration distributions.
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Figure 8.4: Baseline rotor blade torsional sti�ness distribution.
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Figure 8.5: Baseline rotor blade chordwise bending sti�ness distribution.
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Figure 8.7: Baseline-wing center-of-gravity-axis forward of elastic-axis.
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Figure 8.8: Baseline-wing mass and mass radius of gyration distributions.
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Figure 8.31: Cross section of a NACA 0012 airfoil section and associated dimen-
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Figure 8.37: In
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Figure 8.49: Extension-twist-coupled blade twist distributions before deformation

(nonrotating).

344



0.2 0.4 0.6 0.8 1

-50

-40

-30

-20

-10

0

Radial Position, r/R

Twist,
deg.

mtip = 8

mtip = 10
mtip = 12
baseline

Figure 8.50: Extension-twist-coupled blade twist distributions in hover mode
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Figure 8.53: In
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Figure 8.56: In
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Chapter 9

Conclusions and

Recommendations

The research e�orts presented in this dissertation may be divided into four main

parts. First, a simple rigid-blade, elastic wing, axial-
ight tiltrotor analysis was

developed and used to investigate fundamental trends related to the whirl 
utter

instability. Second, an anisotropic rotating beam analysis was developed and used

to investigate the accuracy of an implicit shear deformation model for highly-

coupled and highly-twisted rotor blades. Third, the system equations were derived

for the analytical model of a fully-coupled, anisotropic blade or wing, tiltrotor

in free-
ight or in a wind tunnel. Fourth, the loads, performance, and stability

characteristics of some example elastically-coupled rotor blades were investigated

and compared with those characteristics of a baseline system. This chapter presents

the major conclusions reached for each of these four parts of the present research,

and includes recommendations for future research in the �nal section.
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9.1 Fundamental Study of Whirl Flutter

The in
uences of several key system design parameters on tiltrotor aeroelastic

stability in the high-speed axial 
ight mode were examined in Chapter 2. The

�ndings of this investigation have substantiated earlier work performed by other

researchers as well as identi�ed some new trends and the physical reasonings behind

them. Some of the important past conclusions which have been substantiated are

as follows:

1. Beam and torsion frequency separation has a large in
uence on stability of

the wing beam mode.

2. Negative �3 is more e�ective than positive �3 with respect to stability con-

siderations for a sti�-inplane rotor system.

The results of this study have also identi�ed and explained at least two impor-

tant e�ects which have not been previously discussed in the open literature:

1. Lag frequency tuning appears to be a practical method for increasing axial


ight 
utter velocities. The blade lag frequency may be selected to reduce the

coupling of the ��1 and wing beam modes, thereby increasing the wing beam

mode damping.

2. An increase in forward wing sweep is destabilizing. This is because of

an increase in the rotor destabilizing force components in the beam and chord

directions. The wing frequency changes associated with the reorientation of the

pylon with sweep have a stabilizing in
uence on the beam mode, but this e�ect is

dominated by the rotor force changes.
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9.2 Dynamic Analysis of Pretwisted Elastically-

Coupled Rotor Blades

A dynamic analysis was formulated for rotating pretwisted composite blades which

exhibit anisotropic behavior in Chapter 3. This formulation incorporated the ef-

fects of shear deformation implicitly through elimination of the shear variables

in the material compliance matrix. The major results of this study are listed as

follows:

1. The implicit shear deformation model was able to capture the most signi�-

cant e�ect of shear deformation, namely the reduction in e�ective bending sti�ness

that occurs when a substantial amount of bending-shear coupling is present in a

beam. The di�erence between implicit and explicit use of shear degrees of freedom

was shown to be less than 2 percent up to the second bending modes of some rep-

resentative rotor blades, and less than 4 percent up to the second bending modes

of some highly coupled box beam specimens.

2. One-dimensional global dynamic analysis based on classical beam kinematics

can accurately predict the bending and torsion frequencies of modes important

to an aeroelastic analysis. However, the section properties used in the global

analysis must account for the important nonclassical e�ects associated with shear

deformation, warping, and elastic couplings. These nonclassical e�ects were shown

to have signi�cant in
uence on the frequencies of the fundamental modes of highly

coupled beam structures. Errors on the order of �fteen percent were reduced to

less than �ve percent through accounting of the nonclassical e�ects.

3. The in
uence of twist on the predictive capabilities of the analysis was shown

to be small.

4. The analysis of Chapter 3 was implemented using a p-version beam �nite

element. Both the advantages and disadvantages of this approach were discussed.
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The p-version element proved to be convenient for assuring a converged solution,

and allowed the desired 
exibility in tailoring the displacement approximations

to the dynamic characteristics of a given beam con�guration. Some degree of

e�ciency improvement was demonstrated for the uniform untwisted case, but ef-

�ciency does not appear to be an issue for more realistic rotor blade structures.

Much of the e�ciency of using higher order elements was shown to be lost for a

highly twisted blade.

9.3 Development of the Aeroelastic Tiltrotor

Theory

The theoretical development presented in this dissertation represents the �rst

known attempt to include both anisotropic blade and tiltrotor con�guration model-

ing capabilities in a general purpose rotorcraft analysis. Several specialized features

were developed for this system which include an anisotropic beam model with im-

plicit shear deformation for highly-coupled and highly-twisted rotor blades, a hub

model with six degrees-of-freedom plus gimbal capability, large pylon-tilt angles,

an aeroelastic wing model, and a fully-coupled aeroelastic trim and response ca-

pability for tiltrotors in free-
ight or in a wind tunnel. The derivation of these

features were presented in Chapters 4 through 7. The following conclusions are

based on this study:

1. The present formulation shows that the rigid-body rotation associated with

precone contributes signi�cant elastic pitch-lag coupling terms not included in past

UMARC formulations. These terms are essential for accurate prediction of stability

of most tiltrotor con�gurations.

2. Numerical integration is an e�ective analytical technique for the spanwise

spatial integration of beam �nite element models of highly-twisted blades. Linear
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interpolation at the numerical quadrature points, based on element end-node prop-

erties provides a high level of accuracy compared to constant-property elements.

9.4 Validation and Application of the Aeroelas-

tic Tiltrotor Analysis

This research represents the �rst known investigation of the aeroelastic loads,

response, performance, and stability of tiltrotors with elastically-coupled rotor

blades. The �rst part of the investigation focuses on validation of the tiltrotor

model for a baseline case. The second part of the investigation considers the

potential for increasing the baseline tiltrotor 
utter velocity using bending-twist-

coupled rotor blades. This part of the investigation also considers the in
uence

of bending-twist coupling on performance and blade loads. The third and �nal

part of the investigation considers the potential for improving the aerodynamic

performance of tiltrotors using extension-twist-coupled rotor blades. This part of

the investigation also considers the in
uence of extension-twist coupling on sta-

bility. The following summaries and conclusions are based on these investigations

discussed in Chapter 8:

9.4.1 Validation of the Aeroelastic Tiltrotor Analysis

Validation e�orts show that the present analysis is satisfactory with respect to

its predictions of loads, response, performance, and stability in all three modes of

tiltrotor operation: helicopter, conversion, and airplane 
ight modes. In high-speed

airplane 
ight mode, the present analysis predictions for a baseline con�guration

produced the following conclusions:

1. Coupled bending mode shapes are in good agreement with predictions of

the reference 31 analysis.
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2. Cruise collective is only 1.3 percent di�erent from prediction of the refer-

ence 31 analysis.

3. Predictions of wing and blade frequencies and damping are in good agree-

ment with results presented in reference 31. Predictions of wing beam mode damp-

ing also compare favorably with experimental results.

4. Whirl 
utter is predicted to occur at about 305 knots by the analysis of

reference 31, and at about 285 knots by the present analysis (about 7 percent

di�erence).

5. Agreement in 
utter predictions between the present analysis and the refer-

ence 31 analysis is less then 7 percent for the parametric variations considered of

the baseline precone and blade torsional frequency.

6. Propeller e�ciency predictions agree well with XV-15 
ight test data. A

maximum of 8 percent di�erence was predicted which is within the range of the

test data variations.

Predictions by the present analysis for a baseline design in helicopter, conver-

sion, and airplane 
ight modes produced the following conclusions:

1. Predicted collective pitch agreed within 5 degrees of the predicted values

of reference 31 in spite of di�ering analytical assumptions for the blade torsional

sti�ness in these cases.

2. Damping of the wing modes (torsion, beam, and chord) follows similar trends

through conversion mode as those of the reference 31 analysis.

3. Propeller e�ciency predictions agree well with XV-15 isolated-rotor test

data. A maximum of 4 percent di�erence was predicted which is less than the

range of the test data variations.

4. Blade bending loads trends with respect to pylon angle and 
ight mode

agree well with XV-15 
ight test data. Agreement of load magnitudes were also

good over some of the velocity range considered for each pylon angle. The load
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predictions were found to be very sensitive to the selection of the tail incidence

angle.

9.4.2 Investigation of Bending-Twist-Coupled Blades

This investigation showed that elastic bending-twist coupling of the rotor blade

is a very e�ective means for increasing the 
utter velocity of a tiltrotor. The

following conclusions were reached as part of the bending-twist-coupled rotor blade

investigation:

1. The negative pitch-lag coupling created by the rotor precone e�ect signi�-

cantly reduces the 
utter velocity of tiltrotors in airplane 
ight mode.

2. The introduction of positive pitch-lag coupling via rotor blade elastic bending-

twist coupling can signi�cantly increase the 
utter velocity of a baseline system.

Flutter velocities were increased by as much as 44 percent.

3. The use of elastic bending-twist coupling rather than control mechanisms to

introduce positive pitch-lag coupling has distinct advantages: greater magnitudes

of pitch-lag coupling may be obtained and there is no associated in
uence on the

pitch-gimbal coupling.

4. The magnitudes of bending-twist coupling required to signi�cantly improve

the tiltrotor stability characteristics are physically obtainable and well within the

range of realistic rotor designs.

5. The magnitudes of bending-twist coupling required to signi�cantly improve

the tiltrotor stability characteristics have a negligible in
uence on tiltrotor hover

and cruise performance.

6. The magnitudes of bending-twist coupling required to signi�cantly improve

the tiltrotor stability characteristics have a negligible in
uence on conversion-mode

blade bending loads.
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9.4.3 Investigation of Extension-Twist-Coupled Blades

This investigation showed that passive blade twist control via elastic extension-

twist coupling of the rotor blade has the capability of signi�cantly improving tiltro-

tor aerodynamic performance, particularly in the hover mode. This approach was

shown to have a detrimental impact on stability characteristics, however, because

increased mass of the rotor system reduces the wing torsional frequency and in-

creased centrifugal force worsens the precone e�ect. The stability of an extension-

twist-coupled rotor blade could be made acceptable by: 1) increasing wing torsional

sti�ness, or 2) reducing the rotor precone. The following conclusions were reached

as part of the extension-twist-coupled rotor blade investigation:

1. Optimum blade twist distributions for hover and airplane cruise were de-

termined assuming independent design for each 
ight mode. The optimum twist

distribution predicted for hover was 25�=R (nose-down) linear and the associated

performance improvement was about 11 percent better than that associated with

the baseline twist distribution. The optimum twist distribution predicted for cruise

was a nonlinear distribution composed of the baseline twist from 0 to .4R and

42�=R (nose-down) linear from .4R to the tip. The associated cruise performance

improvement was about 1 percent better than that associated with the baseline

twist distribution. These results showed that signi�cant performance improve-

ments may be gained by changing blade twist between the hover and cruise 
ight

modes rather than using a single blade twist compromised for both 
ight modes.

2. Extension-twist-coupled blade designs depend on high levels of centrifu-

gal forces to produce necessary twist changes. These designs generally result in

increased tip-mass compared to an uncoupled design.

3. Extension-twist-coupled blade designs do not generally result in reduced

torsional sti�ness compared to uncoupled designs because anisotropic laminates

used to produce desired coupling have high o�-axis ply angles.
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4. Example extension-twist-coupled designs improved performance predictions

for hover by 6 to 7.5 percent and for cruise by about 1 percent. The associated

twist deformation change between hover and cruise range from 8 to 10 degrees

measured at the blade tip.

5. Stability characteristics of the basic extension-twist-coupled designs in air-

plane mode are unacceptable. Reductions in 
utter velocity range from 40 to 75

percent for the 1.5� precone case. About one-half of this reduction is attributable to

the decrease in wing torsional frequency due to increased rotor mass, and the rest

is attributable to increased precone e�ect associated with the increased centrifugal

forces.

6. Stability characteristics of the basic extension-twist-coupled designs can be

made acceptable if the following parameters can be achieved within the design

constraints: an increase in wing torsional sti�ness on the order of 20 percent or a

reduction of rotor precone to near zero.

9.5 Recommendations for Future Research

The research presented in this dissertation shows that promising improvements in

tiltrotor aeroelastic performance may be gained through elastic tailoring of the

rotor blade. However, there are several areas where the investigations were limited

by the capabilities of the present analysis. The following section suggests enhance-

ments for the present analysis as well as recommendations for future research in

the area of elastically-coupled rotor blades.

1. The present analysis assumes a straight elastic axis for the blade. Many

modern tiltrotor design studies consider some type of swept blades for the purpose

of reducing drag divergence e�ects at high speeds. The UMARC general purpose

rotorcraft code, on which the present analysis is based, already has a swept elastic

axis capability. It is anticipated that these modi�cations may be introduced into
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the tiltrotor analysis with little di�culty.

2. The present analysis has a limited free-
ight model. It is planned to rederive

the equations of Chapters 4 and 5 with fuselage motion terms included. The

inclusion of the fuselage motion will allow the analysis to include the antisymmetric

wing modes and to predict stability more accurately in free-
ight.

3. The present analysis has a limited drive-train model. It has been shown by

other researchers that the drive-train dynamics can have a signi�cant impact on

tiltrotor stability predictions. The present model considers only two cases: a con-

stant rotor speed (no speed perturbation) and a zero-frequency speed perturbation

(no sti�ness associated with rotor speed perturbations). A drive train dynamics

model is planned to be added to the system which would allow speci�cation of

torsional sti�ness, damping, and inertia associated with the drive system and the

rotor speed perturbation.

4. The present analysis has no wing-download model. The rotor in hover

imparts downward 
ow on the wing which increases the e�ective weight of the

system by about 7 percent. The actual download depends on several parameters

of the wing such as area, 
ap excursions, and incidence angle. Relatively simple

models have been developed for predicting the download which can be included in

the present analysis.

5. The present analysis has no wing/body interference model. The presence of

the wing and fuselage interfere with the air
ow through the rotor system, thereby

altering the angle of attack on the rotor blade. Therefore, even in symmetric 
ight

conditions such as airplane axial 
ight, the rotor will experience asymmetric 
ow

patterns which may contribute greatly to the dynamic loads on the system. The

di�culties associated with including some type of interference model have not yet

been investigated.

6. The present research does not consider hingeless and bearingless rotor tiltro-
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tor systems. These types of rotor systems have been considered for tiltrotors in

the past, so the in
uence of elastic coupling on blades of theses systems should be

investigated.

7. The present research does not use formal optimization techniques in design-

ing elastically-coupled blades. It is evident from the discussion on elastic tailoring

that many trade-o�s must be considered. Certain assumptions were made in the

present investigations so as to account for strength and manufacturability con-

straints. The performance and stability characteristics of these designs may be

improved if these constraints were de�ned more rigorously through formal opti-

mization techniques.

8. The present research does not investigate the e�ects of elastic coupling on

blade transient response. The system response to gust loading is a very important

aspect of tiltrotor design, especially for a civil version of this aircraft. The large

disc area makes the tiltrotor very sensitive to gust loads which can produce un-

comfortable accelerations at the passenger seating locations. It may be possible to

improve this response using elastically-coupled rotor blades. Investigations of the

use of active controls to alleviate gust response is another worthy research topic.

9. Experimental veri�cation of the elastically-coupled tiltrotor blade concepts

is required. There is very little data currently available, so it is not possible to

judge the accuracy of the present analytical predictions when blades are elastically-

coupled. Data on blade loads, performance, and stability are required, especially

stability data near the 
utter boundary.
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Appendix A

Rigid Blade Tiltrotor

Analysis-Math Model

Development

The equations of motion are derived for a tiltrotor cantilvered wing model in the

axial 
ight mode. The derivation consists of �ve parts: the formulation of the blade

structural model based on a three-bladed gimballed rotor system with hub motions

included, the formulation of the rotor aerodynamics and associated contributions to

the system matrices, formulation of an elastic �nite element wing structural model,

formulation of the wing aerodynamics and associated wing system matrices, and

coupling of the wing and rotor/hub systems. The formulation for the rotor system

equations of motion follows closely the formulation presented in Ref. 31. The new

part of the present formulation is the coupling of the rotor equations with a wing

�nite element model rather than a wing modal representation. Forward wing sweep

is incorporated in the wing �nite element formulation to allow that e�ect to be

studied.
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A.1 Rotor and Hub Structural Model

Consider a blade system rotating on a rigid pylon as illustrated in Fig. A.1. The

fundamental blade 
ap and lag motions are considered, and the pylon motion at

the pivot point has six associated degrees of freedom. The pivot point is located

a distance h behind the blade hub, and the rotor is shown to be oriented sym-

metrically with respect to the oncoming 
ow (tiltrotor axial 
ight mode). The

translational degrees of freedom at the pylon pivot are xP , yP , and zP which repre-

sent the vertical, lateral, and longitudinal motions, respectively, and the rotational

degrees of freedom at the pylon pivot are �x, �y, and �z which represent the pylon

yaw, pitch, and roll motions, respectively. There are six rotor forces de�ned at the

rotor hub (in a �xed reference frame) which can be translated back to the pylon

pivot. These forces have both inertial and aerodynamic origins from the blade

system.

The rotor system is assumed to be three-bladed with a gimballed hub. There

are two degrees of freedom per blade which are associated with the fundamental


ap and lag blade modes, de�ned relative to the hub plane. These modes are

assumed to be uncoupled which can be a poor approximation of the elastic motion

of a tiltrotor blade because of the high twist and high collective pitch typically

associated with these blades. However, in this case the predominant 
ap motion

is a rigid body rotation about the center of rotation because of the presence of

the gimbal. Thus, an assumption of uncoupled 
ap and lag motions should not

have a major in
uence on the present model which does not consider all the elastic

blade motion. It has been shown in other investigations such as Kvaternik [16]

that accurate representations of basic tiltrotor dynamics may be achieved without

inclusion of the lag motion at all. Rigid pitch motion of the blade about its

feathering axis is also considered. The steady pitch is a sum of the root collective

and built-in blade twist. A perturbation of the pitch motion is associated with a
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small change in the control inputs and with kinematic pitch/
ap coupling (�3 
ap

hinge skew angle). The rotor is assumed to rotor freely on the shaft (windmilling

state) such that no torque is transmitted to the pylon pivot, and pylon pivot roll

motion does not in
uence rotor rotation rate. This state is modeled after the

equations of motion are transformed into the �xed frame, by assuming a zero

frequency for the collective lag mode. The initial equations of motion for the rotor

system with hub motions included are derived in the rotating reference frame for

a constant rotational speed 
.

The equations of motion for the blade in the rotating reference frame with the

pylon pivot motions included are given in Ref. 31 in nondimensional form as:
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where the MF and ML represent the pure 
ap and pure lag components of the

distributed aerodynamic forces:

MF =
Z R

0
Fzr dr (A.3)

ML =
Z R

0
Fxr dr (A.4)

and the inertia constants are nondimensionalized by the rigid-blade 
ap inertia Ib

(I�� = I�=Ib for example) and are de�ned in terms of the blade section mass and

the blade mode shapes:

Ib =
Z R

0
r2mdr (A.5)

I� =
Z R

0
�2�mdr (A.6)

I�� =
Z R

0
��mr dr (A.7)
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S� =
Z R

0
��mdr (A.8)

I� =
Z R

0
�2�mdr (A.9)

I�� =
Z R

0
��mr dr (A.10)

S� =
Z R

0
��mdr (A.11)

The blade 
ap bending mode is represented by �� and the lag bending mode is

represented by �� , and the mode shape values are �� = r for rigid 
ap motion and

�� = r for rigid lag motion. Coriolis inertial coupling is neglected in these equations

because these forces are small compared to the aerodynamic forces associated with

high in
ow aerodynamics, where the forces in the lag direction are of the same

magnitude as the 
ap direction.

The equations of motion are transformed into the �xed frame using the Fourier

coordinate transformation based on three blades:

I��0(
��

�0 +�
2
�0
�0) + S��0

��

z P =

MF0

ac
(A.12)

I��

�
��

�1C +2
�

�1S +(�
2
� � 1)�1C

�
+ I���(�

��

�y +2
�

�x) =

MF1C

ac
(A.13)

I��

�
��

�1S �2
�

�1C +(�2� � 1)�1S

�
+ I���(

��

�x +2
�

�y) =

MF1S

ac
(A.14)

I��0(
��

� 0 +�
2
�0
�0)� I��0�

��

�z =

ML0

ac
(A.15)

I��

�
��

� 1C +2
�

�1S +(�
2
� � 1)�1C

�
+ S�� (�

��

yP +h
��

�x) =

ML1C

ac
(A.16)

I��

�
��

� 1S �2
�

�1C +(�2� � 1)�1S

�
+ S�� (

��

xP +h
��

�y) =

ML1S

ac
(A.17)

The frequencies and inertial parameters in the �xed frame are shown to vary among

the equations of motion associated with the �xed frame degrees of freedom. This is

so because the root constraint conditions vary for a gimballed rotor system based

on the rotor mode involved. For the gimballed rotor, in the collective 
apping

mode and the cyclic lag modes the blade acts as if it were cantilevered, while in

the cyclic 
ap modes the blade acts as if it were hinged at the center of rotation. In
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collective lag mode, the blade acts as if it were cantilevered if the rotor is assumed

to turn at constant speed, but for a windmilling rotor the blade is free to rotate

about the shaft so that

��0 = 0 (A.18)

I��0 = 1 (A.19)

I��0� = 1 (A.20)

The 
ap aerodynamic moments in the �xed frame are given by:

MF0 =
1

N

X
m

MFm (A.21)

MF1C =
2

N

X
m

MFm cos m (A.22)

MF1S =
2

N

X
m

MFm sin m (A.23)

A.2 Rotor Aerodynamic Model

The rotor aerodynamics are based on linear strip theory with the section lift and

drag de�ned as:

L =
1

2
�c(u2T + u2P )cl (A.24)

D =
1

2
�c(u2T + u2P )cd (A.25)

where cl and cd are the local blade section lift and drag coe�cients, respectively.

The velocity components are de�ned with respect to the hub plane as illustrated

in Fig. A.2, which also illustrates de�nition of the angle of attack, in
ow angle,

and pitch angle of the blade section. Resolving the section aerodynamic forces into

the hub plane, and nondimensionalizing by ac gives the blade loads as:

Fz

ac
= U(uT

cl

2a
� uP

cd

2a
) (A.26)

Fx

ac
= U(uP

cl

2a
+ uT

cd

2a
) (A.27)

Fr

ac
= UuR

cd

2a
� �

Fz

2a
(A.28)
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and the net blade 
ap and lag moment are de�ned by substitution of these expres-

sions into Eqns. A.3 and A.4. The hub forces in the �xed frame are also desired

because these forces act on the wing. In coe�cient form, the required hub forces

are de�ned in terms of the blade section forces as:

CT

�a
=

1

N

X
m

Z 1

0

Fz

ac
dr (A.29)

2CH

�a
=

2

N

X
m

(cos m

Z 1

0

Fr

ac
dr + sin m

Z 1

0

Fx

ac
dr) (A.30)

2CY

�a
=

2

N

X
m

(sin m

Z 1

0

Fr

ac
dr � cos m

Z 1

0

Fx

ac
dr) (A.31)

CQ

�a
=

1

N

X
m

Z 1

0

Fx

ac
r dr (A.32)

2CMx

�a
=

2

N

X
m

sin m

Z 1

0

Fr

ac
r dr (A.33)

2CMy

�a
= � 2

N

X
m

cos m

Z 1

0

Fr

ac
r dr (A.34)

Evaluation of the force integrals requires substitution of the aerodynamic pa-

rameters in terms of perturbation quantities which result from blade and hub

motion The damping and sti�ness associated with these perturbations ultimately

determine the stability of the system. Each velocity component may be written as

a sum of steady and small perturbation parts where the steady parts are given by:

uT = 
r (A.35)

uP = V + � (A.36)

uR = 0 (A.37)

where it can be shown that for high in
ow:

� =
CT

2V
(A:38)

The perturbation parts of the velocities are produced by the blade and hub motion

as:

�uT = r(
�

�z �
�

�)� h(
�

�y sin m+
�

�x cos m) +
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V (�y sin m + �x cos m)+
�

yP cos m� �

xP sin m (A.39)

�uP = r(
�

� � �

�y cos m+
�

�x sin m)+
�

zP (A.40)

�uR = h(� �

�y cos m� �

�x sin m) + �(�y cos m � �x sin m)

� �

yP sin m� �

xP cos m (A.41)

To facilitate integration of the terms involving these perturbations quantities, the

tangential and perpendicular velocity perturbation components are written as:

�uT = r�uTA + �uTB (A.42)

�uP = r�uPB + �uPA (A.43)

The other aerodynamic parameter perturbations are given by:

�cl =
@cl

@�
�� +

@cl

@M
�M (A.44)

�cd =
@cd

@�
�� +

@cd

@M
�M (A.45)

�� = �� � uT �up � up�ut

U2
(A.46)

�U =
uT �uT � up�uP

U
(A.47)

�M = Mtip�U (A.48)

�� = � �KP� (A.49)

Substitution of the perturbation quantities into the integral force equations results

in some rather lengthy and complicated expressions which may be simpli�ed by

expanding the force equations in terms of a set of aerodynamic coe�cients de-

�ned in Ref. 31. These terms represent parts of the force integrations which are

coe�cients of the various control and velocity perturbations, such that:

Z 1

0

Fz

ac
r dr = M0+M��uTB+M _��uTA+M��uPA+M _��uPB+M��� (A.50)Z 1

0

Fx

ac
dr = H0 +H��uTB +H _��uTA +H��uPA +H _��uPB +H��� (A.51)Z 1

0

Fz

ac
dr = T0 + T��uTB + T _��uTA + T��uPA + T _��uPB + T��� (A.52)
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Z 1

0

Fx

ac
r dr = Q0 +Q��uQB +Q _��uQA +Q��uPA +Q _��uPB +Q���(A.53)Z 1

0

Fr

ac
dr = R��uR � �

CT

�a
(A.54)

where the aerodynamic coe�cients M , H, T , Q, and R represent 
ap moment, in-

plane drag force, thrust force, torque moment, and blade radial force, respectively.

The subscripts of these terms designate the source of the force or moment - 0 is

the trim value, � is hub inplane velocity, _� is blade rotational velocity, _� is 
ap

velocity, � is hub longitudinal or in
ow velocity, and � is pitch control.

The blade forces are then transformed into the �xed frame to obtain the �nal

aerodynamic force relationships in terms of the forward 
ight velocity and the

blade and hub motions as:

MF0 = M0 +M _�(
�

�z �
�

�0) +M _�

�

�0

M�

�

zP +M�(�0 �KP�0) (A.55)

MF1C = M�[�h �

�x +V �x+
�

yP ] +

M _�(
�

�1C �
�

�1S) +M _�(
�

�1C +�1S� �

�y) +

M�(�1C �KP�1C) (A.56)

MF1S = M�[�h �

�y +V �y� �

xP ] +

M _�(�
�

�1S +
�

�1C) +M _�(
�

�1S ��1C+
�

�x) +

M�(�1S �KP�1S) (A.57)

�ML0 = Q0 +Q _�(
�

�z �
�

�0) +Q _�

�

�0

Q�

�

zP +Q�(�0 �KP�0) (A.58)

�ML1C = Q�[�h �

�x +V �x+
�

yP ] +

Q _�(
�

�1C �
�

�1S) +Q _�(
�

�1C +�1S� �

�y) +

Q�(�1C �KP�1C) (A.59)

�ML1S = Q�[�h �

�y +V �y� �

xP ] +

Q _�(�
�

�1S +
�

�1C) +Q _�(
�

�1S ��1C+
�

�x) +
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Q�(�1S �KP�1S) (A.60)

Substitution of these expressions into Eqns. A.12-A.17 and grouping terms as coef-

�cients of the blade and pylon degrees of freedom complete the equations of motion

for the rotor system.

As stated earlier, the net force and moments in the �xed frame are also required

as these forces act on the wing, and those expressions will be needed when the

wing formulation is coupled with the rotor/pylon system. After substitution of the

perturbation quantities into the integral force expressions given by Eqns. A.29-

A.34, and carrying out the integrations, the blade forces are transformed into the

�xed frame to obtain the �nal hub forces in terms of the forward 
ight velocity

and the blade and hub motions as:

CT

�a
= T0 + T _�(

�

�z �
�

�0) + T _�

�

�0 +T�
�

zP +T�(�0 �KP�0) (A.61)

2CH

�a
= (H� +R�)[�h �

�y +V �y� �

xP ] +

H _�(�
�

�1S +�1C) +H _�(
�

�1S +
�

�x) +

H�(�1S �KP�1S)�H _��1C (A.62)

2CY

�a
= �(H� +R�)[�h �

�x +V �x+
�

yP ]�

H _�(�
�

�1C ��1C)�H _�(
�

�1C +
�

�y)�

H�(�1C �KP�1C)�H _��1S (A.63)

CQ

�a
= Q0 +Q _�(

�

�z �
�

�0) +Q _�

�

�0 +Q�

�

zP +Q�(�0 �KP�0) (A.64)

There is also an inertial force contribution to the hub forces which must be added

to the above aerodynamic contributions:

(
CT

�a
)int = �S

�

�0




��

�0 �
M�

b




��

z P (A.65)

(
2CH

�a
)int = �S

�

�




��

� 1S �
2



M�

b (
��

xP +h
��

�y) (A.66)

(
2CY

�a
)int =

S��




��

� 1C �
2



M�

b (
��

yP �h ��

�x) (A.67)
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(
CQ

�a
)int = �I

�

�0�




��

� 0 �
I�0



��

�z (A.68)

Rather than carry out the aerodynamic integral expressions for the hub moment

terms CMx
and CMy

, and then adding in a set of inertial contributions, these

moments may be expressed as the result of a spring moment which includes both

the aerodynamic and inertial contributions:

2CMx

�a
=

I��



(�2� � 1)�1S (A.69)

2CMy

�a
= �I

�

�



(�2� � 1)�1C (A.70)

It is seen from these expressions that the hub moments are zero when the in-vacuum


ap frequency �� = 1 such as the case of an articulated rotor hinged at the center

of rotation, and the hub moments increase as the 
ap frequency increases for given

values of the 
ap angles.

All that remains for development of the aerodynamic contributions is de�nition

and evaluation of the integral expressions for the aerodynamic coe�cients. These

expressions are provided in Ref. 31, and are evaluated numerically in the present

analysis. The numerical integration is performed by discretizing the blade into

several segments, and then summing up the aerodynamic contribution of each seg-

ment. A trim procedure is implemented based on changes in collective pitch until

a desired rotor thrust level is obtained, usually zero for a windmilling rotor. The

numerical approach allows changes in the blade section aerodynamics to be consid-

ered, including the in
uence of stall and compressibility. Numerical integration of

the aerodynamic coe�cients requires de�nition of
cla
2a
, cl
2a
,
cda
2a
, cd
2a
,
MclM
2a

, and
McdM
2a

at each blade segment which are based on the local pitch, in
ow, and attack angles

and local Mach number. The following analytical expressions, de�ned in Ref. 31,

are used for the unstalled lift parameters and include Mach number corrections:

cla
2a

=
1

2
(1�M2)�

1
2 (A.71)
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cl

2a
=

�

2
(1�M2)�

1
2 (A.72)

cl

2a
+
MclM
2a

=
�

2
(1�M2)�

3
2 (A.73)

where the stall point is de�ned as 12�. The Mach number in these expressions is

truncated at 0.95 to prevent numerical problems near M = 1. The unstalled drag

parameters are de�ned as:

cd = :0065� :0216�+ :4�2 +�cd (A.74)

�cd = :43(M+ j� j =:26� :9) for j� j> �div (A.75)

�cd = 0 otherwise (A.76)

�div = :26(:9�M) (A.77)

For stalled 
ow, the following approximations are used:

cl = sgn(�) (A.78)

cd = 2 sin2 � (A.79)

A.3 Wing Structural Model

The wing structural model is based on a �nite element formulation of a standard

Euler beam undergoing beam (vertical) bending, chordwise bending, and torsion

(see Fig. A.3). The extensional degree of freedom (translation along wing span)

is not considered as the wing is assumed to be rigid in this direction. The wing

continuous degrees of freedom are given by

û = fw v �g (A:80)

which are related to the discrete degrees of freedom for one element:

q̂ = fw1 v1 �1 �z1 � y1 w2 v2 �2 �z2 � y2g (A:81)
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as

û = [H] q̂ (A:82)

where [H] is a matrix of shape functions. The standard shape functions are applied

here, a set of four Hermitian polynomials [Hb] for the bending degrees of freedom

and a set of two linear polynomials [H�] for the torsion degree of freedom such that

the matrix of shape functions may be written as:

[H] =

2
666664
H1
b 0 0 0 H2

b H3
b 0 0 0 H4

b

0 H1
b 0 H2

b 0 0 H3
b 0 H4

b 0

0 0 H1
� 0 0 0 0 H2

� 0 0

3
777775 (A:83)

The strain energy for the linear beam theory is de�ned in several references

and is de�ned in terms of the beam continuous degrees of freedom of the present

formulation as:

V =
1

2

Z l

0
[EIc(v

00)2 + EIb(w
00)2 +GJ(�0)2] dx (A:84)

The kinetic energy is formulated on the assumption that the center of gravity may

be o�set from the elastic axis by a distance y. The translational velocity of an

arbitrary point on the beam cross section is written as:

_ux = 0 (A.85)

_uy = _v (A.86)

_uz = _w + y _� (A.87)

In matrix form, the accelerations of an arbitrary point may be written as:

�̂u =

2
64 �uy

�uz

3
75 =

2
64 0 1 0

1 0 y

3
75
2
666664

�w

�v

��

3
777775 (A:88)
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The variation of the kinetic energy is then given by:

T =
Z
V
� �ûT �̂u dV =

Z l

0
�ûT

2
666664
ZZ

A
�

2
666664
1 0 y

0 1 0

y 0 y2

3
777775 dA

3
777775 �̂u dx (A:89)

For the structural model, Hamilton's principle is applied in its conservative

form:

Z t2

t1

�(T � V ) dt = 0 (A:90)

into which are substituted the appropriate expressions for the strain and kinetic

energy and the discrete relations to the continuous degrees of freedom. Following

these substitutions, the structural mass and sti�ness matrices may be expressed

as:

h
MS

i
=

Z l

0
[H]T [Ms][H] dx (A.91)

h
KS

i
=

Z l

0
[H]T [Ks][H] dx (A.92)

where

[Ms] =

2
666664
m 0 S�

0 m 0

S� 0 I�

3
777775 (A.93)

[Ks] =

2
666664
EIb 0 0

0 EIc 0

0 0 GJ

3
777775 (A.94)

These integrations are performed symbolically, and result in the 10 x 10 beam

element structural mass and sti�ness matrices.
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A.4 Wing Aerodynamic Model

The wing aerodynamic model is based on the quasi-steady lift approximation:

�eff = �0 + �� _w

U
(A:95)

where w and � represent two of the three continuous degrees of freedom for the

wing, and U is the free stream velocity. The components of aerodynamic force

may then be written as:

Lw = qccl�(�0 + �� _w

U
) (A.96)

Lv = 0 (A.97)

M� = Lw e (A.98)

where e is the chordwise distance of the elastic axis behind the aerodynamic center.

These forces may be expressed with aerodynamic coe�cient matrices as:8>>>>><
>>>>>:

Lw

Lv

M�

9>>>>>=
>>>>>;
= [A0]

8>>>>><
>>>>>:

�0

0

�0

9>>>>>=
>>>>>;
+ [A1]

8>>>>><
>>>>>:

w

v

�

9>>>>>=
>>>>>;
+ [A2]

8>>>>><
>>>>>:

_w

_v

_�

9>>>>>=
>>>>>;

(A:99)

where

[A1] =

2
666664
0 0 qccl�

0 0 0

0 0 qcecl�

3
777775 (A.100)

[A2] =

2
666664
�qccl�=U 0 0

0 0 0

�qcecl�=U 0 0

3
777775 (A.101)

and [A0] = [A1]. The variation of work done by the aerodynamic forces may be

written as

�W =
Z l

0
f�w �v ��g

8>>>>><
>>>>>:

Lw

Lv

M�

9>>>>>=
>>>>>;
dx (A:102)
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which, after substitution of the aerodynamic coe�cient expressions and the rela-

tions between the discrete and continuous degrees of freedom, leads to the aerody-

namic damping and sti�ness matrices:

h
CA

i
=

Z l

0
[H]T [A1][H] dx (A.103)

h
KA

i
=

Z l

0
[H]T [A2][H] dx (A.104)

These integrations are performed symbolically, and result in the 10 x 10 beam

element aerodynamic damping and sti�ness matrices. Application of Hamilton's

principle in the nonconservative form (work included) shows that the aerodynamic

matrices may be subtracted from the structural matrices to give the total mass,

damping, and sti�ness matrices for the wing as:

[Mw] = [MS] (A.105)

[Cw] = [CS]� [CA] (A.106)

[Kw] = [KS]� [KA] (A.107)

A.5 Wing Aerodynamic Model with Sweep

With sweep included in the wing, the aerodynamic contribution to the system

matrices must be modi�ed. Consider the elastic wing swept back at an angle � as

illustrated in Fig. A.4. The quasi-steady lift approximation is now written as

�eff = �0 + � cos �� _w

U
� w0 sin� (A:108)

where a continuous degrees of freedom w0 is now required for the formulation. The

vector of continuous degrees of freedom and the associated shape function matrix

used for the structural model must be modi�ed to re
ect this new requirement.

The new relationship between the continuous and discrete degrees of freedom is

written as:

ûA = fw v � v0 w0g (A:109)
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which are related to the discrete degrees of freedom for one element:

q̂ = fw1 v1 �1 �z1 � y1 w2 v2 �2 �z2 � y2g (A:110)

as

ûA = [HA] q̂ (A:111)

where [HA] is the new matrix of shape functions for the swept wing formulation:

h
HA

i
=

2
66666666666664

H1
b 0 0 0 H2

b H3
b 0 0 0 H4

b

0 H1
b 0 H2

b 0 0 H3
b 0 H4

b 0

0 0 H1
� 0 0 0 0 H2

� 0 0

0 (H1
b )
0 0 (H2

b )
0 0 0 (H3

b )
0 0 (H4

b )
0 0

(H1
b )
0 0 0 0 (H2

b )
0 (H3

b )
0 0 0 0 (H4

b )
0

3
77777777777775

(A:112)

To be compatible with the new vector of continuous displacements, the work

is now expressed as:

�W =
Z l

0
f�w �v �� �v0 �w0g

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Lw

Lv

M�

Mz

My

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

dx (A:113)

The components of aerodynamic force are, again, written with aerodynamic

coe�cient matrices:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Lw

Lv

M�

Mz

My

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= [A3]

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�0

0

�0

0

0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

+ [A4]

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

w

v

�

v0

w0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

+ [A5]

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

_w

_v

_�

_v0

_w0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(A:114)
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where the new matrices are 5 x 5 rather then 3 x 3, and are listed as follows:

[A4] =

2
66666666666664

0 0 qccl� cos � 0 qccl� sin�

0 0 0 0 0

0 0 qcecl� cos � 0 qcecl� sin�

0 0 0 0 0

0 0 0 0 0

3
77777777777775

(A.115)

[A5] =

2
66666666666664

�qccl�=U 0 0 0 0

0 0 0 0 0

�qeccl�=U 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
77777777777775

(A.116)

with [A3] = [A4]. The variation of work done by the aerodynamic forces then leads

to the aerodynamic damping and sti�ness matrices:

h
CA

i
=

Z l

0
[HA]T [A4][H

A] dx (A.117)

h
KA

i
=

Z l

0
[HA]T [A5][H

A] dx (A.118)

which may be subtracted from the structural matrices as before. The structural

wing matrices are not in
uenced by the wing sweep.

Wing sweep also modi�es the lift curve slope. For a shear wing, where the

airfoil section is assumed to rotate with the sweep and remain perpendicular to

the elastic axis, the e�ective lift curve slope becomes:

(cla)eff = (cla) cos � (A:119)

and for a standard swept wing, where the airfoil remains aligned with the free

stream, the e�ective lift curve slope becomes:

(cla)eff = (cla) cos
2 � (A:120)
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A.6 Coupling of the Wing and Rotor Systems

The wing is coupled to the rotor through the discrete degrees of freedom at the

wing tip. There are two ways in which the coupling occurs: 1) the rotor system

degrees of freedom at the pylon pivot point are related to the discrete degrees of

freedom at the wing tip and 2) the rotor hub forces, which are written in terms of

the rotor perturbation parameters, perform work on the wing.

The discrete displacements at the wing tip may be written as:

q̂t = f�w2 �v2 ��2 �v
0

2 �w
0

2g (A:121)

where the subscript 2 indicates association with the second node of the wing tip

beam element. With sweep introduced into the wing, these are related to the pylon

pivot degrees of freedom (xP , yP , zP , �x, �y, and �z) as:

xP = w2 (A.122)

yP = v2 sin� (A.123)

zP = v2 cos � (A.124)

�x = v02 (A.125)

�y = �2 cos �� w0

2 sin� (A.126)

�z = ��2 sin�� w0

2 cos � (A.127)

and these relationships are substituted into the rotor system equations (Eqns. A.12-

A.17 and Eqns. A.55-A.60) and the net hub force equations (Eqns. A.66-A.68).

Work is performed on the wing by the rotor hub forces, but only on the wing
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tip. After a transformation for the wing sweep, the work may be written as:

�W = f�w2 �v2 ��2 �v
0

2 �w
0

2g

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

H

T cos � + Y sin�

(My + hH) cos � +Q sin�

Mz � hY

�Q cos � + (My + hH) sin�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(A:128)

There is no integration here since the degrees of freedom are discrete. The work

is nondimensionalized by dividing through by (N
2
Ib


2) which gives the coe�cient

form of the rotor hub forces:

�W
N
2
Ib
2

= �q̂t(
2


�a
)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

CH

CT cos � + CY sin�

(CMy
+ �hCH) cos � + CQ sin�

CMz
� �hCY

�CQ cos � + (CMy
+ �hCH) sin�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(A:129)

Substitution of the expressions for the hub forces into the above equations yields

the work performed on the wing tip beam element in terms of the wing tip and

blade perturbation motions. Writing this system as coe�cients of the wing and

blade motion yields damping and sti�ness matrices which may be added to those

associated with the rotor system (Eqns. A.12-A.17 and Eqns. A.55-A.60).

The wing and rotor system equations may then be assembled using standard

�nite element techniques where the parts of each matrix associated with common

global degrees of freedom are added together. The rotor matrices are already in

global form because they are written in terms of the discrete wing tip degrees of

freedom. The wing matrices are assembled based on conversion of the element

degrees of freedom into global degrees of freedom, but, as only one element is

associated with the wing tip node, the �ve degrees of freedom at that location

are already global. The common global degrees of freedom for the rotor and wing

systems are those �ve degrees of freedom associated with the wing tip node.
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A.7 Listing of the Rotor/Wing Matrices

The �nal inertial and aerodynamic rotor/wing matrices are listed in the form used

in the rigid-blade analysis. The notation appearing in the listing is as follows:

mroti(i,j) is the mass matrix which has only inertial contributions, crotf(i,j) is the

aerodynamic damping matrix, croti(i,j) is the inertial damping matrix, krotf(i,j) is

the aerodynamic sti�ness matrix, and kroti(i,j) is the inertial sti�ness matrix. The

element matrices are separated by aerodynamic and inertial contributions so that

one of these e�ects may be easily excluded from the analysis if so desired. The two

contributions are simply added together if both are desired. The numbering i or j

associated with each degrees of freedom is

1 = w2

2 = v2

3 = �2

4 = v02

5 = w0

2

6 = �1c

7 = �1s

8 = �1c

9 = �1s

10 = �0

11 = �0

where the �rst 5 are the discrete degrees of freedom associated with the wing tip

and the last 6 are the rotor system �xed frame degrees of freedom. Some of the

parameters appearing in the listing are de�ned as follows:

csl = cos�
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snl = sin�

Mbstar = M�

b

Szstar = S��

Sb0star = S��0

Ibastar = I���

Ibetstar = I��

Iz0star = I��0

Izetstar = I��

Iz0astar = I��0�

nubeta = ��

kp = kinematic pitch-
ap coupling

hmu = Aerodynamic coe�cient H�

tth = Aerodynamic coe�cient T�

and the remaining terms can be understood from these examples. The term autorot

has a value of 1 if constant rotor speed assumption is desired (no rotor speed

perturbation degree of freedom) and has a value of 0 otherwise. The nonzero

contributions to the rotor wing matrices are now listed as:

mroti(1,1) = 2*Mbstar;

mroti(1,3) = 2*Mbstar*csl*h;

mroti(1,5) = 2*Mbstar*h*snl;

mroti(1,9) = Szstar;

mroti(2,2) = 2*Mbstar*csl^2 + 2*Mbstar*snl^2;

mroti(2,4) = -2*Mbstar*h*snl;

mroti(2,8) = -(Szstar*snl);

mroti(2,10) = 2*Sb0star*csl;
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mroti(3,1) = 2*Mbstar*csl*h;

mroti(3,3) = 2*Mbstar*csl^2*h^2 + 2*I0star*autorot*snl^2;

mroti(3,5) = -2*I0star*autorot*csl*snl + 2*Mbstar*csl*h^2*snl;

mroti(3,9) = Szstar*csl*h;

mroti(3,11) = 2*Iz0astar*autorot*snl;

mroti(4,2) = -2*Mbstar*h*snl;

mroti(4,4) = 2*Mbstar*h^2;

mroti(4,8) = Szstar*h;

mroti(5,1) = 2*Mbstar*h*snl;

mroti(5,3) = -2*I0star*autorot*csl*snl + 2*Mbstar*csl*h^2*snl;

mroti(5,5) = 2*I0star*autorot*csl^2 + 2*Mbstar*h^2*snl^2;

mroti(5,9) = Szstar*h*snl;

mroti(5,11) = -2*Iz0astar*autorot*csl;

mroti(6,3) = -(Ibastar*csl);

mroti(6,5) = -(Ibastar*snl);

mroti(6,6) = Ibetstar;

mroti(7,4) = Ibastar;

mroti(7,7) = Ibetstar;

mroti(8,2) = -(Szstar*snl);

mroti(8,4) = Szstar*h;

mroti(8,8) = Izetstar;

mroti(9,1) = Szstar;

mroti(9,3) = Szstar*csl*h;

mroti(9,5) = Szstar*h*snl;

mroti(9,9) = Izetstar;

mroti(10,2) = Sb0star*csl;

mroti(10,10) = Ib0star;
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mroti(11,3) = Iz0astar*autorot*snl;

mroti(11,5) = -(Iz0astar*autorot*csl);

mroti(11,11) = Iz0star;

crotf(1,1) = gamma*hmu;

crotf(1,3) = csl*gamma*h*hmu;

crotf(1,4) = -(gamma*hbd);

crotf(1,5) = gamma*h*hmu*snl;

crotf(1,7) = -(gamma*hbd);

crotf(1,9) = gamma*hzd;

crotf(2,2) = gamma*hmu*snl^2 - 2*csl^2*gamma*tlam;

crotf(2,3) = -(csl*gamma*hbd*snl) + 2*csl*gamma*snl*tzd;

crotf(2,4) = -(gamma*h*hmu*snl);

crotf(2,5) =( -(gamma*hbd*snl^2) - 2*csl^2*gamma*tzd)*autorot;

crotf(2,6) = gamma*hbd*snl;

crotf(2,8) = -(gamma*hzd*snl);

crotf(2,10) = -2*csl*gamma*tbd;

crotf(2,11) = 2*csl*gamma*tzd;

crotf(3,1) = csl*gamma*h*hmu;

crotf(3,2) = -2*autorot*csl*gamma*qlam*snl;

crotf(3,3) = csl^2*gamma*h^2*hmu + 2*autorot*gamma*qzd*snl^2;

crotf(3,4) = -(csl*gamma*h*hbd);

crotf(3,5) = csl*gamma*h^2*hmu*snl - 2*autorot*csl*gamma*qzd*snl;

crotf(3,7) = -(csl*gamma*h*hbd);

crotf(3,9) = csl*gamma*h*hzd;

crotf(3,10) = -2*autorot*gamma*qbd*snl;

crotf(3,11) = 2*autorot*gamma*qzd*snl;
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crotf(4,2) = -(gamma*h*hmu*snl);

crotf(4,3) = csl*gamma*h*hbd;

crotf(4,4) = gamma*h^2*hmu;

crotf(4,5) = gamma*h*hbd*snl;

crotf(4,6) = -(gamma*h*hbd);

crotf(4,8) = gamma*h*hzd;

crotf(5,1) = gamma*h*hmu*snl;

crotf(5,2) = 2*autorot*csl^2*gamma*qlam;

crotf(5,3) = csl*gamma*h^2*hmu*snl - 2*autorot*csl*gamma*qzd*snl;

crotf(5,4) = -(gamma*h*hbd*snl);

crotf(5,5) = 2*autorot*csl^2*gamma*qzd + gamma*h^2*hmu*snl^2;

crotf(5,7) = -(gamma*h*hbd*snl);

crotf(5,9) = gamma*h*hzd*snl;

crotf(5,10) = 2*autorot*csl*gamma*qbd;

crotf(5,11) = -2*autorot*csl*gamma*qzd;

crotf(6,2) = -(gamma*mmu*snl);

crotf(6,3) = csl*gamma*mbd;

crotf(6,4) = gamma*h*mmu;

crotf(6,5) = gamma*mbd*snl;

crotf(6,6) = -(gamma*mbd);

crotf(6,8) = gamma*mzd;

crotf(7,1) = gamma*mmu;

crotf(7,3) = csl*gamma*h*mmu;

crotf(7,4) = -(gamma*mbd);

crotf(7,5) = gamma*h*mmu*snl;

crotf(7,7) = -(gamma*mbd);

crotf(7,9) = gamma*mzd;
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crotf(8,2) = -(gamma*qmu*snl);

crotf(8,3) = csl*gamma*qbd;

crotf(8,4) = gamma*h*qmu;

crotf(8,5) = gamma*qbd*snl;

crotf(8,6) = -(gamma*qbd);

crotf(8,8) = gamma*qzd;

crotf(9,1) = gamma*qmu;

crotf(9,3) = csl*gamma*h*qmu;

crotf(9,4) = -(gamma*qbd);

crotf(9,5) = gamma*h*qmu*snl;

crotf(9,7) = -(gamma*qbd);

crotf(9,9) = gamma*qzd;

crotf(10,2) = -(csl*gamma*mlam);

crotf(10,3) = autorot*gamma*mzd*snl;

crotf(10,5) = -(autorot*csl*gamma*mzd);

crotf(10,10) = -(gamma*mbd);

crotf(10,11) = gamma*mzd;

crotf(11,2) = -(csl*gamma*qlam);

crotf(11,3) = autorot*gamma*qzd*snl;

crotf(11,5) = -(autorot*csl*gamma*qzd);

crotf(11,10) = -(gamma*qbd);

crotf(11,11) = gamma*qzd;

croti(6,4) = 2*Ibastar;

croti(6,7) = 2*Ibetstar;

croti(7,3) = 2*Ibastar*csl;

croti(7,5) = 2*Ibastar*snl;
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croti(7,6) = -2*Ibetstar;

croti(8,9) = 2*Izetstar;

croti(9,8) = -2*Izetstar;

krotf(1,3) = -(V*gamma*hmu);

krotf(1,6) = gamma*hbd;

krotf(1,7) = gamma*hth*kp;

krotf(1,8) = -(gamma*hzd);

krotf(2,4) = V*gamma*hmu*snl;

krotf(2,6) = -(gamma*hth*kp*snl);

krotf(2,7) = gamma*hbd*snl;

krotf(2,9) = -(gamma*hzd*snl);

krotf(2,10) = 2*csl*gamma*kp*tth;

krotf(3,3) = -(V*csl*gamma*h*hmu);

krotf(3,6) = csl*gamma*h*hbd;

krotf(3,7) = csl*gamma*h*hth*kp;

krotf(3,8) = -(csl*gamma*h*hzd);

krotf(3,10) = 2*autorot*gamma*kp*qth*snl;

krotf(4,4) = -(V*gamma*h*hmu);

krotf(4,6) = gamma*h*hth*kp;

krotf(4,7) = -(gamma*h*hbd);

krotf(4,9) = gamma*h*hzd;

krotf(5,3) = -(V*gamma*h*hmu*snl);

krotf(5,6) = gamma*h*hbd*snl;

krotf(5,7) = gamma*h*hth*kp*snl;

krotf(5,8) = -(gamma*h*hzd*snl);

krotf(5,10) = -2*autorot*csl*gamma*kp*qth;
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krotf(6,4) = -(V*gamma*mmu);

krotf(6,6) = gamma*kp*mth;

krotf(6,7) = -(gamma*mbd);

krotf(6,9) = gamma*mzd;

krotf(7,3) = -(V*gamma*mmu);

krotf(7,6) = gamma*mbd;

krotf(7,7) = gamma*kp*mth;

krotf(7,8) = -(gamma*mzd);

krotf(8,4) = -(V*gamma*qmu);

krotf(8,6) = gamma*kp*qth;

krotf(8,7) = -(gamma*qbd);

krotf(8,9) = gamma*qzd;

krotf(9,3) = -(V*gamma*qmu);

krotf(9,6) = gamma*qbd;

krotf(9,7) = gamma*kp*qth;

krotf(9,8) = -(gamma*qzd);

krotf(10,10) = gamma*kp*mth;

krotf(11,10) = gamma*kp*qth;

kroti(3,6) = -(Ibastar*csl) + Ibastar*csl*nubeta^2;

kroti(4,7) = Ibastar - Ibastar*nubeta^2;

kroti(5,6) = -(Ibastar*snl) + Ibastar*nubeta^2*snl;

kroti(6,6) = -Ibetstar + Ibetstar*nubeta^2;

kroti(7,7) = -Ibetstar + Ibetstar*nubeta^2;

kroti(8,8) = -Izetstar + Izetstar*nuzeta^2;

kroti(9,9) = -Izetstar + Izetstar*nuzeta^2;

kroti(10,10) = Ib0star*nub0^2;
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kroti(11,11) = Iz0star*nuz0^2;

A.8 Listing of the Wing Element Matrices

The �nal wing element matrices with both aerodynamic and structural contribu-

tions are listed in the form used in the rigid-blade analysis. The notation appearing

in the listing is as follows: m(i,j) is the mass matrix which has only inertial contri-

butions, c(i,j) is the damping matrix which has both structural and aerodynamic

contributions, and k(i,j) is the sti�ness matrix which also has both structural and

aerodynamic contributions. The numbering i or j associated with each degree of

freedom is:

1 = w1

2 = v1

3 = �1

4 = v01

5 = w0

1

6 = w2

7 = v2

8 = �2

9 = v02

10 = w0

2

where the �rst 5 are the discrete degrees of freedom associated with node 1 (node

closer to wing root) and the last 5 are the discrete degrees of freedom associated

with node 2. Some of the parameters appearing in the listing are de�ned as follows:

mcg = mass per unit length
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Salf = 1st mass moment of inertia about elastic axis per unit length

Icg = 2nd mass moment of inertia about elastic axis per unit length

R = blade radius

l = element length

Cla = wing lift curve slope

cord = blade chord, c=R

qou = dynamic pressure over free stream velocity, q=U

sdamp = structural damping

eic = EIc

eif = EIb

gj = GJ

The nonzero contributions to the wing matrices are now listed as follows:

Wing element mass matrix:

m(1,1) = 13*R^2*l*mcg/35;

m(1,3) = 7*R*Salf*l/20;

m(1,5) = -11*R*l^2*mcg/210;

m(1,6) = 9*R^2*l*mcg/70;

m(1,8) = 3*R*Salf*l/20;

m(1,10) = 13*R*l^2*mcg/420;

m(2,2) = 13*R^2*l*mcg/35;

m(2,4) = 11*R*l^2*mcg/210;

m(2,7) = 9*R^2*l*mcg/70;

m(2,9) = -13*R*l^2*mcg/420;

m(3,1) = 7*R*Salf*l/20;
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m(3,3) = Icg*l/3;

m(3,5) = -(Salf*l^2)/20;

m(3,6) = 3*R*Salf*l/20;

m(3,8) = Icg*l/6;

m(3,10) = Salf*l^2/30;

m(4,2) = 11*R*l^2*mcg/210;

m(4,4) = l^3*mcg/105;

m(4,7) = 13*R*l^2*mcg/420;

m(4,9) = -(l^3*mcg)/140;

m(5,1) = -11*R*l^2*mcg/210;

m(5,3) = -(Salf*l^2)/20;

m(5,5) = l^3*mcg/105;

m(5,6) = -13*R*l^2*mcg/420;

m(5,8) = -(Salf*l^2)/30;

m(5,10) = -(l^3*mcg)/140;

m(6,1) = 9*R^2*l*mcg/70;

m(6,3) = 3*R*Salf*l/20;

m(6,5) = -13*R*l^2*mcg/420;

m(6,6) = 13*R^2*l*mcg/35;

m(6,8) = 7*R*Salf*l/20;

m(6,10) = 11*R*l^2*mcg/210;

m(7,2) = 9*R^2*l*mcg/70;

m(7,4) = 13*R*l^2*mcg/420;

m(7,7) = 13*R^2*l*mcg/35;

m(7,9) = -11*R*l^2*mcg/210;

m(8,1) = 3*R*Salf*l/20;

m(8,3) = Icg*l/6;
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m(8,5) = -(Salf*l^2)/30;

m(8,6) = 7*R*Salf*l/20;

m(8,8) = Icg*l/3;

m(8,10) = Salf*l^2/20;

m(9,2) = -13*R*l^2*mcg/420;

m(9,4) = -(l^3*mcg)/140;

m(9,7) = -11*R*l^2*mcg/210;

m(9,9) = l^3*mcg/105;

m(10,1) = 13*R*l^2*mcg/420;

m(10,3) = Salf*l^2/30;

m(10,5) = -(l^3*mcg)/140;

m(10,6) = 11*R*l^2*mcg/210;

m(10,8) = Salf*l^2/20;

m(10,10) = l^3*mcg/105;

Wing damping matrix:

c(1,1) = 13*Cla*R^2*cord*l*qou/35 + sdamp_w;

c(1,5) = -11*Cla*R*cord*l^2*qou/210;

c(1,6) = 9*Cla*R^2*cord*l*qou/70;

c(1,10) = 13*Cla*R*cord*l^2*qou/420;

c(2,2)= sdamp_v;

c(3,1) = 7*Cla*R*cord*e*l*qou/20;

c(3,3) = sdamp_phi;

c(3,5) = -(Cla*cord*e*l^2*qou)/20;

c(3,6) = 3*Cla*R*cord*e*l*qou/20;

c(3,10) = Cla*cord*e*l^2*qou/30;
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c(5,1) = -11*Cla*R*cord*l^2*qou/210;

c(5,5) = Cla*cord*l^3*qou/105;

c(5,6) = -13*Cla*R*cord*l^2*qou/420;

c(5,10) = -(Cla*cord*l^3*qou)/140;

c(6,1) = 9*Cla*R^2*cord*l*qou/70;

c(6,5) = -13*Cla*R*cord*l^2*qou/420;

c(6,6) = 13*Cla*R^2*cord*l*qou/35 + sdamp_w;

c(6,10) = 11*Cla*R*cord*l^2*qou/210;

c(7,7) = sdamp_v;

c(8,1) = 3*Cla*R*cord*e*l*qou/20;

c(8,5) = -(Cla*cord*e*l^2*qou)/30;

c(8,6) = 7*Cla*R*cord*e*l*qou/20;

c(8,8) = sdamp_phi;

c(8,10) = Cla*cord*e*l^2*qou/20;

c(10,1) = 13*Cla*R*cord*l^2*qou/420;

c(10,5) = -(Cla*cord*l^3*qou)/140;

c(10,6) = 11*Cla*R*cord*l^2*qou/210;

c(10,10) = Cla*cord*l^3*qou/105;

Wing stiffness matrix:

k(1,1) = 12*R^2*eif/l^3 - Cla*R^2*cord*q*snl/2;

k(1,3) = -7*Cla*R*cord*l*q*csl/20;

k(1,5) = -6*R*eif/l^2 + Cla*R*cord*l*q*snl/10;

k(1,6) = -12*R^2*eif/l^3 + Cla*R^2*cord*q*snl/2;

k(1,8) = -3*Cla*R*cord*l*q*csl/20;

k(1,10) = -6*R*eif/l^2 - Cla*R*cord*l*q*snl/10;
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k(2,2) = 12*R^2*eic/l^3;

k(2,4) = 6*R*eic/l^2;

k(2,7) = -12*R^2*eic/l^3;

k(2,9) = 6*R*eic/l^2;

k(3,1) = -(Cla*R*cord*e*q*snl)/2;

k(3,3) = gj/l - Cla*cord*e*l*q*csl/3;

k(3,5) = Cla*cord*e*l*q*snl/12;

k(3,6) = Cla*R*cord*e*q*snl/2;

k(3,8) = -(gj/l) - Cla*cord*e*l*q*csl/6;

k(3,10) = -(Cla*cord*e*l*q*snl)/12;

k(4,2) = 6*R*eic/l^2;

k(4,4) = 4*eic/l;

k(4,7) = -6*R*eic/l^2;

k(4,9) = 2*eic/l;

k(5,1) = -6*R*eif/l^2 + Cla*R*cord*l*q*snl/10;

k(5,3) = Cla*cord*l^2*q*csl/20;

k(5,5) = 4*eif/l;

k(5,6) = 6*R*eif/l^2 - Cla*R*cord*l*q*snl/10;

k(5,8) = Cla*cord*l^2*q*csl/30;

k(5,10) = 2*eif/l + Cla*cord*l^2*q*snl/60;

k(6,1) = -12*R^2*eif/l^3 - Cla*R^2*cord*q*snl/2;

k(6,3) = -3*Cla*R*cord*l*q*csl/20;

k(6,5) = 6*R*eif/l^2 - Cla*R*cord*l*q*snl/10;

k(6,6) = 12*R^2*eif/l^3 + Cla*R^2*cord*q*snl/2;

k(6,8) = -7*Cla*R*cord*l*q*csl/20;

k(6,10) = 6*R*eif/l^2 + Cla*R*cord*l*q*snl/10;

k(7,2) = -12*R^2*eic/l^3;
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k(7,4) = -6*R*eic/l^2;

k(7,7) = 12*R^2*eic/l^3;

k(7,9) = -6*R*eic/l^2;

k(8,1) = -(Cla*R*cord*e*q*snl)/2;

k(8,3) = -(gj/l) - Cla*cord*e*l*q*csl/6;

k(8,5) = -(Cla*cord*e*l*q*snl)/12;

k(8,6) = Cla*R*cord*e*q*snl/2;

k(8,8) = gj/l - Cla*cord*e*l*q*csl/3;

k(8,10) = Cla*cord*e*l*q*snl/12;

k(9,2) = 6*R*eic/l^2;

k(9,4) = 2*eic/l;

k(9,7) = -6*R*eic/l^2;

k(9,9) = 4*eic/l;

k(10,1) = -6*R*eif/l^2 - Cla*R*cord*l*q*snl/10;

k(10,3) = -(Cla*cord*l^2*q*csl)/30;

k(10,5) = 2*eif/l - Cla*cord*l^2*q*snl/60;

k(10,6) = 6*R*eif/l^2 + Cla*R*cord*l*q*snl/10;

k(10,8) = -(Cla*cord*l^2*q*csl)/20;

k(10,10) = 4*eif/l;
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Figure A.1: Wing and rotor model showing pylon pivot degrees of freedom and

rotor hub forces.

397



Fx

Fz

uP
U

uT

α

φ

θ

Hub plane uR

Fr

L

D

Figure A.2: Velocity and force components on a representative blade section.
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Figure A.3: Continuous and discrete degrees of freedom associated with a wing

element.
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Figure A.4: Geometry of the swept wing con�guration.
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Appendix B

Rigid Blade Flap Model

Including Free-Flight

The objective of the rigid-blade 
ap analysis is to provide initial estimates (to be

used for the elastic blade coupled trim procedure) for the blade collective and cyclic

controls �75; �1c; and �1s, and the fuselage angle of attack, �f , if free-
ight trim is

considered. If the elastic-coupled-trim is for a cantilevered wing model, then �f is

not required and the procedure is simpli�ed. The rigid-blade analysis consists of

three parts: 1) estimation of the fuselage angle of attack and the rotor thrust based

on the gross airframe forces, but not including rotor hub forces other than thrust

and not including blade 
ap motion, 2) estimation of the collective setting required

to obtain the estimated rotor thrust from (1), and 3) with the initial guesses for

fuselage angle of attack and the collective setting, solve simultaneously the coupled

rotor/fuselage system with rotor 
ap motion included, resulting in an estimation

of the four desired values �75, �1c; and �1s, and �f plus the rotor 
apping unknowns

�0, �1c; and �1s.

401



B.1 Estimate of Fuselage Angle of Attack and

Rotor Thrust

If free-
ight is not required, then a rotor thrust estimate is provided directly as

input, the fuselage angle is set to zero, and the analysis of the present section is

skipped. Otherwise, an initial approximation for �f is obtained from a balance of

forces on the fuselage. The hub forces from the rotor are not known, but the rotor

thrust can be estimated since it must balance the aircraft drag and weight. The

lift on the wing and horizontal tail depend on �f , so even this initial estimate is

an iterative process. The lift and drag contributions from the wing and horizontal

tail are calculated as:

Df =
�2

2


Nb

3�a

f

A
(B.1)

Dw =
�2

2


Nb

3�a
Sw(Cd)w (B.2)

Dt =
�2

2


Nb

3�a
St(Cd)t (B.3)

Lw =
�2

2


Nb

3�a
Sw(Cl�)w(�f + (�0)w) (B.4)

Mw =
�2

2


Nb

3�a
Sw(Cm)wcw (B.5)

Mt =
�2

2


Nb

3�a
St(Cm)tct (B.6)

Tfh = Df +Dw +Dt (B.7)

Tr = Tfh=sin�p , if sin�p 6= 0 (conversion, airplane modes) (B.8)

Tr = W , if sin�p = 0 (helicopter mode) (B.9)

Tfv = T cos�p , if sin�p 6= 0 (conversion, airplane modes) (B.10)

Tfv = W , if sin�p = 0 (helicopter mode) (B.11)

where the lift and drag formulas for the wing, tail, and fuselage are the same as

those used in the elastic blade trim equations, Tr is the estimate of rotor thrust, Tfh

is the horizontal component of rotor thrust which must balance the drag forces,
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and Tfv is the vertical component of rotor thrust which must balance with the

airframe lift forces. The drag forces are made to balance by setting the horizontal

component of rotor thrust equal to the sum of drags. Based on the pylon angle,

this then de�nes the thrust and the vertical component of the thrust which is used

to de�ne a force residual in the vertical direction:

F1 = W � Lw � Lt � Tfv (B:12)

The lift contribution of the horizontal tail is calculated from the pitch moment

balance:

Lt = (Mw +Mt �Dt(zw � zt)�Wxw �W�fzw �Dfzw)=(xt � xw) (B:13)

because it is assumed that the elevator angle of the tail may be set to produce this

balance. A Jacobian is calculated from the force residual equation:

J = Tfh + Tfhcos
2�p =sin

2�p + Lw=�f + Lt=�f (B:14)

and is used to calculate the new estimate for �f as:

(�f )new = (�f )old + F1=J (B:15)

B.2 Derivation of Blade and Hub Forces

Following convergence, the next step is to determine the collective setting required

to produce the rotor thrust Tr. This calculation is also an iterative process, and

the aerodynamic model of the rotor forces must �rst be formulated.

The rotor �xed-frame (hub) forces are calculated based on a rigid-blade-
apping

model with 
ap frequency �� and a high-in
ow aerodynamic model. The local

velocities on a blade section at some spanwise station along the blade are de�ned

as:

Ut = tc + tww + tw0w
0 + t _w _w (B.16)

Up = pc + pww + pw0w
0 + p _w _w (B.17)
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where Ut is the tangential velocity component, Up is the perpendicular (upward)

velocity component; subscript c denotes constant values, w and w0 indicate depen-

dence of the local velocity on displacement w, and _w indicates dependence of the

local velocity on blade 
ap velocity. The velocity components are de�ned as:

tc = �cos�p cos�1 sin + ��pcos�p cos sin�1 + �sin�1 +

�sin�p sin�1 + xcos�1 (B.18)

tw = ��pcos�1 (B.19)

tw0 = ��sin�1 (cos�p cos�1 sin + sin�p sin�1 ) (B.20)

t _w = sin�1 (B.21)

pc = ��pcos�p cos cos�1 + �cos�1 + �cos�1 sin�p �

�cos�p sin sin�1 � xsin�1 (B.22)

pw = ��psin�1 (B.23)

pw0 = ��cos�1 (cos�p cos�1 sin + sin�p sin�1 ) (B.24)

p _w = cos�1 (B.25)

and the blade displacement w is de�ned in terms of the 
ap angle � such that:

w = x� (B.26)

w0 = � (B.27)

_w = x _� (B.28)

The control angle � is substituted for in terms of its harmonic components as:

� = �75 + �1ccos + �1ssin (B:29)

Now, assuming the blade produces only lift proportional to the nominal lift curve

slope a, the forces on the blade along the chord line and perpendicular to it are

given by:

vb0 =



6
u2p (B.30)
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wb0 = �

6
utup (B.31)

which may be transformed into the hub plane as:

Fx = �vb0cos�1 + wb0sin�1 (B.32)

Fz = vb0sin�1 + wb0cos�1 (B.33)

Fr = ��Fz (B.34)

The rotor forces are calculated by transforming the following integrals into the

�xed system:

T =
Z 1

0
Fz dx (B.35)

H =
Z 1

0
(Fxsin + Frcos ) dx (B.36)

Mx =
Z 1

0
xFzsin dx (B.37)

My =
Z 1

0
xFzcos dx (B.38)

and the 
ap moment equilibrium on the blade is given by:

M� =
Z 1

0
xFz dx (B:39)

which can be written as

M� =M0 +M1ccos +M1ssin (B:40)

whereM0 represents the constant terms, andM1c andM1s represent the coe�cients

of the periodic terms cos and sin , respectively. The �nal terms in these force

equations (4 hub forces and 3 
apping moments) are listed in the following section.

B.3 Listing of the Hub Force and Blade Mo-

ment Expressions

The integrations of Eqns. B.35-B.40 result in seven lengthy expressions of the four

hub forces and three blade moments, all in the rotating frame and containing the
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seven unknowns.

The complete equation of motion for blade 
apping is given by:

�� + �2�� = 
M� +
!2
�0


2
�p (B:41)

which in nondimensional form and after substitution of the 
ap angle in terms of

harmonics:

� = �0 + �1ccos + �1ssin (B:42)

may be written as three equations which are coe�cients of the periodic terms:

�0 =
1

�2�
(
M0 + !2

�0
�p) (B:43)

which is uncoupled from the cyclic equations:

��2 � 1



�1c = M1c (B.44)

��2 � 1



�1s = M1s (B.45)

The cyclic equations are coupled because M1c and M1s each contain terms with

both �1c and �1s. The actual terms of the aerodynamic moments are listed as

follows: the steady moment is written as

M0 =
14X
i=1

bi (B:46)

with the coe�cients given as follows

b1 = �(�i cos3�75)=6: (B.47)

b2 = �(� cos3�75sp)=6: (B.48)

b3 = cos2�75 sin�75=8: (B.49)

b4 = �2cos2�p cos
2�75 sin�75=8: (B.50)

b5 = �(�i cos�75 sin2�75)=6: (B.51)

b6 = �(� cos�75sin�p sin2�75)=6: (B.52)
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b7 = sin3�75=8: (B.53)

b8 = �2cos2�p sin
3�75=8: (B.54)

b9 = �cos�p cos
3�75�1s=6: (B.55)

b10 = �i�cos�p cos
2�75 sin�75�1s=8: (B.56)

b11 = �2cos�p cos
2�75sin�p sin�75�1s=8: (B.57)

b12 = �cos�p cos�75 sin
2�75�1s=6: (B.58)

b13 = �i�cos�p sin
3�75�1s=8: (B.59)

b14 = �2cos�p sin�p sin
3�75�1s=8: (B.60)

the cosine moment is written as

M1c =
32X
i=15

bi (B:61)

with

b15 = �(�1s cos3�75)=8: (B.62)

b16 = �(��0cos�p cos3�75)=6: (B.63)

b17 = �(��pcos�p cos3�75)=6: (B.64)

b18 = ��0�p
2cos�p cos

3�75=6: (B.65)

b19 = �(�2�1scos2�p cos3�75)=8: (B.66)

b20 = �(�1s cos�75 sin2�75)=8: (B.67)

b21 = �(��0cos�p cos�75 sin2�75)=6: (B.68)

b22 = �(��pcos�p cos�75 sin2�75)=6: (B.69)

b23 = ��0�p
2cos�p cos�75 sin

2�75=6: (B.70)

b24 = �(�2�1scos2�p cos�75 sin2�75)=8: (B.71)

b25 = cos3�75�1c=8: (B.72)

b26 = �2cos2�p cos
3�75�1c=8: (B.73)

b27 = �i cos
2�75 sin�75�1c=6: (B.74)
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b28 = � cos2�75sin�p sin�75�1c=6: (B.75)

b29 = cos�75 sin
2�75�1c=8: (B.76)

b30 = �2cos2�p cos�75 sin
2�75�1c=8: (B.77)

b31 = �i sin
3�75�1c=6: (B.78)

b32 = �sin�p sin
3�75�1c=6: (B.79)

and the sine moment is written as

M1s =
50X
i=33

bi (B:80)

with

b33 = �1c cos
3�75=8: (B.81)

b34 = �(�i�cos�p cos3�75)=4: (B.82)

b35 = �(�2�1ccos2�p cos3�75)=8: (B.83)

b36 = �(�2cos�p cos3�75sp)=4: (B.84)

b37 = �cos�p cos
2�75 sin�75=3: (B.85)

b38 = �1c cos�75 sin
2�75=8: (B.86)

b39 = �(�i�cos�p cos�75 sin2�75)=4: (B.87)

b40 = �(�2�1ccos2�p cos�75 sin2�75)=8: (B.88)

b41 = �(�2cos�p cos�75sin�p sin2�75)=4: (B.89)

b42 = �cos�p sin
3�75=3: (B.90)

b43 = cos3�75�1s=8: (B.91)

b44 = 3�2cos2�p cos
3�75�1s=16: (B.92)

b45 = �i cos
2�75 sin�75�1s=6: (B.93)

b46 = � cos2�75sin�p sin�75�1s=6: (B.94)

b47 = cos�75 sin
2�75�1s=8: (B.95)

b48 = 3�2cos2�p cos�75 sin
2�75�1s=16: (B.96)
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b49 = �i sin
3�75�1s=6: (B.97)

b50 = �sin�p sin
3�75�1s=6: (B.98)

The four hub force expressions, currently written in the rotating hub plane,

must be converted to a �xed frame. The Fourier coordinate transformation into

the �xed frame depends on the number of blades, but, as this rigid-blade analysis

only provides an estimate of control parameters and the aerodynamic model is

based only on a representative lift curve slope, it is adequate to assume an ar-

bitrary number of blades to represent the tip-path-plane tilt for any typical Nb

bladed system. This assumption greatly simpli�es the hub force equations. The

transformation to �xed frame is based on a three-bladed system, and the resulting

hub forces are written as follows: the rotor thrust is given by

T =

Nb

6

14X
i=1

ai (B:99)

where

a1 = �(�i cos3�75)=2: (B.100)

a2 = �(� cos3�75sp)=2: (B.101)

a3 = cos2�75 sin�75=3: (B.102)

a4 = �2cos2�p cos
2�75 sin�75=2: (B.103)

a5 = �(�i cos�75 sin2�75)=2: (B.104)

a6 = �(� cos�75sin�p sin2�75)=2: (B.105)

a7 = sin3�75=3: (B.106)

a8 = �2cos2�p sin
3�75=2: (B.107)

a9 = �cos�p cos
3�75�1s=2: (B.108)

a10 = �i�cos�p cos
2�75 sin�75�1s=2: (B.109)

a11 = �2cos�p cos
2�75sin�p sin�75�1s=2: (B.110)

a12 = �cos�p cos�75 sin
2�75�1s=2: (B.111)
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a13 = �i�cos�p sin
3�75�1s=2: (B.112)

a14 = �2cos�p sin�p sin
3�75�1s=2: (B.113)

and the rotor drag force is given by

H =

Nb

6

34X
i=15

ai (B:114)

where

a15 = 3:�i�1c cos
3�75=4: (B.115)

a16 = 3:��1c cos
3�75sp=4: (B.116)

a17 = �(�1c cos2�75 sin�75)=3: (B.117)

a18 = �i�cos�p cos
2�75 sin�75=2: (B.118)

a19 = �2cos�p cos
2�75sin�p sin�75=2: (B.119)

a20 = 3:�i�1c cos�75 sin
2�75=4: (B.120)

a21 = 3:��1c cos�75sin�p sin
2�75=4: (B.121)

a22 = �(�1c sin3�75)=3: (B.122)

a23 = �i�cos�p sin
3�75=2: (B.123)

a24 = �2cos�p sin�p sin
3�75=2: (B.124)

a25 = �i cos
3�75�1s=4: (B.125)

a26 = � cos3�75sin�p �1s=4: (B.126)

a27 = �2i cos
2�75 sin�75�1s=2: (B.127)

a28 = �i� cos
2�75sin�p sin�75�1s (B.128)

a29 = �2 cos2�75sin
2�p sin�75�1s=2: (B.129)

a30 = �i cos�75 sin
2�75�1s=4: (B.130)

a31 = � cos�75sin�p sin
2�75�1s=4: (B.131)

a32 = �2i sin
3�75�1s=2: (B.132)

a33 = �i�sin�p sin
3�75�1s (B.133)
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a34 = �2sin2�p sin
3�75�1s=2: (B.134)

The roll and pitch moments in the �xed frame may be written in terms of the


apping restraint as they were in the rigid-blade analysis of Chapter 2:

Mx =

Nb

6
(�2� � 1)�1s (B.135)

My = �
Nb

6
(�2� � 1)�1c (B.136)

B.4 Estimate of Collective

An iterative process is used to establish an initial value for the collective trim based

on achieving the desired level of thrust on the rigid-blade. The residual equation

here is simply

F1 = T � Tr (B:137)

where T is the calculated thrust based on the current value of �75 and Tr is the

desired thrust level calculated from the �rst part of this analysis. The new value

of the collective is calculated from the analytical Jacobian:

J =
@T

@�75
=

Nb

6

14X
i=1

@ai

@�75
(B.138)

(�75)new = (�75)old + F1=J (B.139)

Convergence here results in the estimate for the collective setting, and ends the

analysis for the axisymmetric hover and axial 
ight cases. For these cases, only the

fuselage angle of attack and collective setting are required. Otherwise, the analysis

continues to determine the appropriate cyclic control values.
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B.5 Coupled Rotor/Airframe and Flapping Blade

Analysis

For conversion and airplane mode, an appropriate starting value for the collective

and fuselage angle of attack are now known. Using these initial values, a new

process is begun considering equilibrium of the entire airframe with the four hub

forces included and blade 
apping included. There are seven unknowns in this

sequence: the three pitch controls, �75, �1c, and �1s, the fuselage angle of attack

�f , and the three 
ap angles, �0, �1c, and �1s. Values for the unknowns �1c, �1s,

�1c, and �1s are initially set to small values (.01 rad). The value of �0 is obtained

throughout the iterative process by Eqn. B.43 using the current values of �75 and

�1s. The new values of the remaining unknowns are obtained through formulation

of a numerical 6 x 6 Jacobian matrix and 6 force residual equations. Airframe

forces and rotor forces are combined to write the equilibrium of the aircraft as:

F1 = 2Tfh � (Dw +Df +Dt) (B.140)

F2 = W � (Lw + Lt + 2Tfv) (B.141)

F3 = 2My + 2hH +Mw +Mt � Lt(xt � xw)�

Dt(zw � zt)�Wxw �Wzw�f �Dfzw (B.142)

F4 = Mx (B.143)

F5 =
(�2� � 1)



�1s �M1c (B.144)

F6 =
(�2� � 1)



�1c �M1s (B.145)

where F1 represents the horizontal force equilibrium, F2 represents the vertical

force equilibrium, F3 represents the pitch moment equilibrium, F4 represents the

roll equilibrium of the rotor in the �xed system, and F5 and F6 represent the cyclic

moment balances of the blade in the rotating frame which primarily in
uence the

unknowns �1c and �1s. A Jacobian matrix is numerically generated by calculating
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the change in the six force residuals due to individual perturbations of the six

independent unknowns (�0 is dependent). The new controls are written in terms

of the previous iteration as:

(�̂)new = (�̂)old + (1�R)[J ]�1F̂ (B:146)

where �̂ is a vector of the six independent unknowns and F̂ is a vector of the six force

residuals, and R is a parameter used to control numerical damping. The iteration

process continues until convergence is reached, determined by the magnitude of

the force residual vector:

Mag(F ) =

vuut 6X
i=1

F 2
i (B.147)

Mag(F ) < :000001 for convergence (B.148)

The convergence of the problem is controlled by the application of appropriate

damping factors on the step size taken by the unknowns, and by recalculation of

the Jacobian matrix after a selected number of iterations.
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